• Title/Summary/Keyword: Digital Health

Search Result 2,278, Processing Time 0.029 seconds

Effect of rinsing time on the accuracy of interim crowns fabricated by digital light processing: An in vitro study

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Kang, Seen-Young;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.24-35
    • /
    • 2021
  • PURPOSE. This study was to evaluate the effect of rinsing time on the accuracy of interim crowns fabricated by digital light processing. MATERIALS AND METHODS. The maxillary right first molar master die was duplicated using a silicone material, while a study die was produced using epoxy resin. Scans of the epoxy resin die were used in combination with CAD software to design a maxillary right first molar interim crown. Based on this design, 24 interim crowns were fabricated with digital light processing. This study examined the trueness and precision of products that were processed with one of the three different postprocessing rinsing times (1 min, 5 min, and 10 min). Trueness was measured by superimposing reference data with scanned data from external, intaglio, and marginal surfaces. Precision was measured by superimposing the scan data within the group. The trueness and precision data were analyzed using Kruskal-Wallis, nonparametric, and post-hoc tests, and were compared using a Mann-Whitney U test with Bonferroni correction (α=.05). RESULTS. The trueness of the external and intaglio surfaces of crowns varied significantly among the different rinsing times (P=.004, P=.003), but there was no statistically significant difference in terms of trueness measurements of the marginal surfaces (P=.605). In terms of precision, statistically significant differences were found among the external, intaglio, and marginal surfaces (P=.001). CONCLUSION. Interim crowns rinsed for 10 minutes showed high accuracy.

Prediction of Deficiency Pattern in Diabetic Patients Using Multi-frequency Bioimpedance Resistance (다주파수 생체임피던스 저항을 이용한 당뇨병 환자의 허증 변증 예측)

  • Kim, Kahye;Kim, Seul Gee;Cha, Jiyun;Yoo, Ho-Ryong;Kim, Jaeuk U.
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.3
    • /
    • pp.94-99
    • /
    • 2022
  • The discovery of biomarkers related to pattern identification (PI), the core diagnostic theory of Korean medicine (KM), is one of the methods that can provide objective and reliable evidence by applying PI to clinical practice. In this study, 40 diabetic patients and 41 healthy control subjects recruited from the Korean medicine clinic were examined to determine the human electrical response related to the deficiency pattern, a representative pattern of diabetes. Qi-Blood-Yin-Yang deficiency pattern scores, which are representative deficiency patterns for diabetes mellitus, were obtained through a questionnaire with verified reliability and validity, and the human electrical response was measured non-invasively using a bioimpedance meter. In ANCOVA analysis using gender as a covariate, the 5 kHz frequency resistance and 5-250 kHz frequency reactance were significantly lower in the diabetic group than in non-diabetic control group. In addition, the multiple regression analysis showed a positive correlation (R2=0.11~0.19) between the Yang deficiency pattern score and resistance value for the diabetic group; the correlation was higher at higher frequencies of 50kHz (R2=0.18) and 250kHz (R2=0.19) compared to 5kHz(R2=0.11). In contrast, there was no such significant association in the control group. It implies that bioimpedance resistance measured at finite frequencies may be useful in predicting Yang deficiency, which is closely related to diabetic complications by reflecting the decrease in body water content and metabolism. In the future, large-scale planned clinical studies will be needed to identify biomarkers associated with different types of PI in diabetes.

The Smart Medicine Delivery Using UAV for Elderly Center

  • Li, Jie;Weiwei, Goh;N.Z., Jhanjhi;David, Asirvatham
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.78-88
    • /
    • 2023
  • Medication safety and medicine delivery challenge the well-being of the elderly and the management of the elderly center. With the outbreak of COVID-19, the elderly in the care center were challenged by the inconvenience of the medication restocking. The purpose of this paper accentuates the importance of the design and development of an UAV-based Smart Medicine Case (UAV-SMC) to improve the performance of medication management and medicine delivery in the elderly center. The researchers came up with the design of UAV-SMC in the light of the UAV and IoT technology to improve the performance of both Medication Practice Management (MPM) and Low Inventory Detection and Delivery (LIDD). Based on the result, with UAV-SMC, the performance of both MPM and LIDD was significantly improved. The UAV-SMC improves the efficacy of medication management in the elderly center by 26.97 to 149.83 seconds for each medication practice and 9.03 mins for each time of medicine delivery in Subang Jaya Malaysia. This paper only investigates the adoption of UAV-SMC in the content of elderly center rather than other industries. The authors consider integrating the UAV-SMC with the e-pharmacy system in the future. In conclusion, the UAV-SMC has significantly improved the medication management and guard the safety of elderly and caretaker in the elderly in the post-pandemic times.

Mental Healthcare Digital Twin Technology for Risk Prediction and Management (정신건강 위험 예측 및 관리를 위한 멘탈 헬스케어 디지털 트윈 기술 연구)

  • SeMo Yang;KangYoon Lee
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.29-36
    • /
    • 2022
  • The prevalence of stress and depression among emotional workers is increasing due to the rapid increase in emotional labor and service workers. However, the current mental health management of emotional workers is difficult to consider the emotional response at the time of stress situations, and the existing mental health management is limited because the individual's base state is not reflected. In this study, we present mental healthcare digital twin solution technology, a personalized stress risk management solution. For mental health risk management due to emotional labor, a solution simulation is performed to accurately predict stress risk through synchronization/modeling of dynamic objects in virtual space by extracting individual stress risk factors such as emotional/physical response and environment into various modalities. It provides a mental healthcare digital twin solution for predicting personalized mental health risks that can be configured with modalities and objects tailored to the environment of emotional workers and improved according to user feedback.

Application of Distance Videoconferencing on Women's Health Teaching-Learning Process (여성건강 교수-학습과정에서의 원격영상강의 시스템 적용)

  • Kang Nam-Mi
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.5 no.2
    • /
    • pp.165-176
    • /
    • 1999
  • The goal of women's health education can be defined as improvement of the quality of their life during entire life cycle. In Korean society, women's well-being is very important to themselves as well as their families, communities. and country. Thus it is important to systematize information on women's health education. These systematized information can be used in preparation of coming 21st century called information era. Unfortunately there have been few studies in women's health education research in Korea especially distance education for women's health related with korean socio-cultural background, etc. Distance education has been internationally used in a variety of settings as a means of providing health education information. The objective of this study was to apply and evaluate a multimedia videoconferencing on women's health distance teaching-learning process. In this study I'd like to design multimedia digital educational material used in the distance teaching-learning process for women's health, and to practice a multimedia videoconferencing on women's health distance teaching-learning processs. The procedures of this study were summarized as follows ; 1. Analysis of subjects' characteristics and education contents and for women's health. 2. Design of a multimedia videoconferencing on women's health distance teaching-learning process. 3. Development of women's health distance teaching-1earning process. 4. Evaluation of developed digital multimedia and distance teaching-learning process related with women's health These results will be used in development of the distance-learning education program for improving Korean women's health. Findings su99est that the advanced methodologies for designing and evaluating the women's health distance teaching-learning programs be obtained through the collaboration with other field's staffs.

  • PDF

Evaluating the accuracy (trueness and precision) of interim crowns manufactured using digital light processing according to post-curing time: An in vitro study

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Kim, Dong-Yeon;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.2
    • /
    • pp.89-99
    • /
    • 2021
  • PURPOSE. This study aimed to compare the accuracy (trueness and precision) of interim crowns fabricated using DLP (digital light processing) according to post-curing time. MATERIALS AND METHODS. A virtual stone study die of the upper right first molar was created using a dental laboratory scanner. After designing interim crowns on the virtual study die and saving them as Standard Triangulated Language files, 30 interim crowns were fabricated using a DLP-type 3D printer. Additively manufactured interim crowns were post-cured using three different time conditions-10-minute post-curing interim crown (10-MPCI), 20-minute post-curing interim crown (20-MPCI), and 30-minute post-curing interim crown (30-MPCI) (n = 10 per group). The scan data of the external and intaglio surfaces were overlapped with reference crown data, and trueness was measured using the best-fit alignment method. In the external and intaglio surface groups (n = 45 per group), precision was measured using a combination formula exclusive to scan data (10C2). Significant differences in accuracy (trueness and precision) data were analyzed using the Kruskal-Wallis H test, and post hoc analysis was performed using the Mann-Whitney U test with Bonferroni correction (α=.05). RESULTS. In the 10-MPCI, 20-MPCI, and 30-MPCI groups, there was a statistically significant difference in the accuracy of the external and intaglio surfaces (P<.05). On the external and intaglio surfaces, the root mean square (RMS) values of trueness and precision were the lowest in the 10-MPCI group. CONCLUSION. Interim crowns with 10-minute post-curing showed high accuracy.

Reliability and Accuracy of Digital Impression Obtained from CS-3500 Intraoral Scanner (CS-3500 구강 내 스캐너로 채득된 디지털 인상의 신뢰도 및 정확도 평가)

  • Kim, Sa-Hak;Kim, Jae-Hong;Kim, Chong-Kyen
    • Journal of dental hygiene science
    • /
    • v.15 no.5
    • /
    • pp.673-678
    • /
    • 2015
  • The purpose of this study was to evaluate the reliability and accuracy of linear measurements in digital models compared to master model. A master model (ANKA-4; Frasaco GmbH, Tettnang, Germany) with the prepared upper full arch tooth was used. Four linear measurements were recorded between landmarks, directly on the master model and the digital models by a single examiner. Measurements were made with a digital caliper from manual model and with the software from the virtual models. The t-test for paired samples and intraclass correlation coefficient (ICC) were used for statistical analysis. The measurement of two methods showed good reliability. The mean differences between master and digital model were 0.06~0.12 mm. These in vitro studies show that accuracy and reliability of the digital impression is similar to that of the gold standard. Therefore digital impression was also considered to be a acceptable for placement clinically.

A study on the digital image transfer application mass chest X-ray system up-grade (간접촬영기의 디지털 영상 변환 장치 적용에 대한 연구)

  • Kim, Sun-Chil;Park, Jong-Sam;Lee, Jon-Il
    • Journal of radiological science and technology
    • /
    • v.26 no.3
    • /
    • pp.13-17
    • /
    • 2003
  • By converting movable indirect mass chest X-ray devices for vehicles into digital systems and upgrading it to share information with the hospital's medical image information system, excellencies have been confirmed as a result of installing and running this type of system and are listed hereinafter. 1. Upgrading analog systems, such as indirect mass chest X-ray devices dependent on printed film, to digital systems allows them to be run and managed much more efficiently, contributing to the increase in the stability and the efficiency of the system. 2. Unlike existing images, communication based on DICOM standards allow images to be compatible with the hospital's outer and inner network PACS systems, extending the scope of the radiation departments information system. 3. Assuming chest-exclusive indirect mass chest X-rays, a linked development of CAD (Computer Aided Diagnosis, Detector) becomes possible. 4. By applying wireless Internet, Web-PACS for movable indirect mass chest X-ray devices for vehicles will become possible. Research in these fields must continue and if the superior image quality and convenience of digital systems are confirmed, I believe that the conversion of systems still dependent on analog images to modernized digital systems is a must.

  • PDF

Evaluation of validity of three dimensional dental digital model made from blue LED dental scanner (Blue LED 방식의 스캐너로 제작된 치과용 3차원 디지털 모형의 정확도 평가)

  • Kim, Jae-Hong;Jung, Jae-Kwan;Kim, Ki-Baek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3007-3013
    • /
    • 2014
  • The objectives of this study was to evaluate the validity of 3D digital models made from blue LED dental scanner. Twenty same cases of stone models and 3d digital models were manufactured for this study. Intercanine distance, intermolar distance, two dental arch lengths(right, left) and two diagonal of dental arch lengths(right, left) were measured for evaluation of validity. The nonparametric Wilcoxon rank sum test was used for statistical analysis (${\alpha}$=0.05). Although stone models showed larger than digital models in all measured distances(p<0.05), none exceeded the clinically acceptable range.

Seismic fragility curves for a concrete bridge using structural health monitoring and digital twins

  • Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.503-515
    • /
    • 2022
  • This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.