• 제목/요약/키워드: Digital Geometry

검색결과 210건 처리시간 0.027초

역공학을 이용한 사출금형제작 공정에 관한 연구 (A Study on Digital Process of Injection Mold in Reverse Engineering)

  • 이희관;김형찬;양균의
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.160-165
    • /
    • 2002
  • A study on digital processes of injection mold in reverse engineering are presented. Reverse engineering is useful fur several cases, where user has no geometry information of object. Laser scanner is used to obtaining 3D coordinates of object. Sequences to process cloud data are described; sampling to reduce number of points, sorting to adjust the point order, and fitting to curve and surface, and so on. Split slide structure of mold is used fur undercut part and high viscosity material. Flow of injection molding are analysed to correct cooling channel and simulate molding conditions. NC tool paths are generated to carve core and cavity. The processes are performed in digital data for reduction of lead time and consecutive geometry data.

슈도 랜덤 코드와 기하학 코드를 이용한 광학적 Angle Sensor (Opticla Angle Sensor Using Pseudorandom-code And Geometry-code)

  • 김희성;도규봉
    • 대한전자공학회논문지SD
    • /
    • 제41권2호
    • /
    • pp.27-32
    • /
    • 2004
  • Absolute optical angle 센서는 디지털 광학 장치의 핵심적인 부분이라고 말할 수 있으며, 이 장치의 목적은 Pseudorandom-code와 Geometry-code를 이 용하여 코드화된 원판(coded disk)의 상대적/절대적 변위 (Relative/Absolute angle position)를 해결하기 위함이다. 이 기술에서 디스크의 각 위치(Angular position)는 먼저 Pseudorandom-code에 의해 "Coarse" angle이 검출되어 결정되어지며, 그런 다음 Geometry-code의 Pixel 계산에 의해서 얻어지는 "Fine" angular position 데이터는, 7㎛의 Line image 센서를 사용 시, 시스템의 0.006°분해능 결과를 구할 수 있다. 제안된 기술은 비접촉 반사 특성, 시스템의 높은 분해능, 상대적으로 간단한 코트 패턴 그리고 센서의 고유한 디지털 성질을 갖는 등 많은 면에서 새로운 방식이다 더 나아가서 시스템은 두 개의 코드화된 원판에 적용하여 얻어진 절대 자의 변형(Absolute angular displacement)을 관찰하는 방식으로 쉽게 토크 센서로 변경할 수 있다. 제안된 센서의 디지털 광전 특성은 토크와 각을 동시에 측정함으로써 자동 차량 시스템에 사용 시 이상적인 시스템을 만든다. 본문에서는 코드화된 원판의 정확한 각 위치(Angular position)를 결정하기 위하여 Pseudo random-code와 Geometry-code를 활용한 기술을 제안하며, 아이디어의 실행 가능성을 구현하는 실험 결과를 제시하였다.

DTP 기법을 활용한 니트 원피스 디자인 (A Study on Knitted One-piece Design by DTP)

  • 오윤정;조규화
    • 복식
    • /
    • 제59권6호
    • /
    • pp.106-117
    • /
    • 2009
  • The purpose of this study is to present a new vision for high value-added knit wear design by designing and producing knitted one-piece dress by digital textile printing which based on digital making a new industry, culture, and lifestyle in a new millenium. According as casual fashion is more and more popular, preferring knit wear, a key item of casual fashion, continues to increases. Therefore it is important to study knit wear design practically, try a new technique, and represent creative designs. As a method of the study, visual and textural data were investigated for theory of knit and DTP and a variety of knit design samples were illustrated Especially, to perform a study based on the industry, this researcher worked and experienced at J fashion Ltd., knit wear promotion company. Firstly, the theory of DTP was investigated and then 3 knitted one-pieces were designed and produced. The concept of design was digital geometry which represented chic and modern image in digital age. Target was city adult group from the late teens to the late twenties and keeping open mind and active lifestyle and enjoying the activity and unique characteristics of knit wear. This study has developed knitted one-piece design by DTP technique which has been generally applied to woven fabric. This is of great significant in opening a new way of high value-added knit wear design.

디지털 오너먼트의 패턴생성기법 및 표현특성 연구 (A Study of Pattern Generation Technique & Expressive Characteristics of Digital Ornament)

  • 한혜신;김문덕
    • 한국실내디자인학회논문집
    • /
    • 제19권5호
    • /
    • pp.83-94
    • /
    • 2010
  • Conventionally, ornament has developed around linear thinking based on Euclidean geometry, and been explained as simple and lucid natural Euclidean geometrical phenomena. The modular arrangement with vertical, horizontal and diagonal grids has been an organizing principle of classical ornament, but in digital era ornament is found not to be explained only with the principle of traditional arrangement due to the seemingly irregular complex forms. In that sense, this study presents the concept of digital ornament and examined the backgrounds of ornament in digital age, that are complex system and non-Euclidean geometry. Accordingly, the present study takes an approach by dividing new formal types of ornament into algorithmic form, hybrid form and dynamic form to find out a principle of pattern organization. Lately, architects who actively use computer for their architectural designs take the algorithmic strategies in nature and create various and complex patterns by simple rules. The patterns are not the repetition of the same, but the production of singularities. In addition, hybrid form by morphing shows a topologically flexible evolutionary transformation, and is used to create in-between transitional shapes from the source to target. Finally, the patterns by the interaction between the system components which are corresponded to the embedded forces emerge from dynamic simulation of the natural environment. Rather than objects itself, focus is given to the process of generating forms, and the ornamental patterns as the revelation of such implicit order provide not just the formal beauty but also spatial pathways for lights and air, maximizing the effects of lights.

Towards a digital twin realization of the blade system design study wind turbine blade

  • Baldassarre, Alessandro;Ceruti, Alessandro;Valyou, Daniel N.;Marzocca, Pier
    • Wind and Structures
    • /
    • 제28권5호
    • /
    • pp.271-284
    • /
    • 2019
  • This paper describes the application of a novel virtual prototyping methodology to wind turbine blade design. Numeric modelling data and experimental data about turbine blade geometry and structural/dynamical behaviour are combined to obtain an affordable digital twin model useful in reducing the undesirable uncertainties during the entire turbine lifecycle. Moreover, this model can be used to track and predict blade structural changes, due for example to structural damage, and to assess its remaining life. A new interactive and recursive process is proposed. It includes CAD geometry generation and finite element analyses, combined with experimental data gathered from the structural testing of a new generation wind turbine blade. The goal of the research is to show how the unique features of a complex wind turbine blade are considered in the virtual model updating process, fully exploiting the computational capabilities available to the designer in modern engineering. A composite Sandia National Laboratories Blade System Design Study (BSDS) turbine blade is used to exemplify the proposed process. Static, modal and fatigue experimental testing are conducted at Clarkson University Blade Test Facility. A digital model was created and updated to conform to all the information available from experimental testing. When an updated virtual digital model is available the performance of the blade during operation can be assessed with higher confidence.

실제 형상을 통한 복부대동맥의 혈류 유동에 대한 수치적 연구 (Numerical Study on the Blood Flow in the Abdominal Artery with Real Geometry)

  • 강한영;김민철;홍이송;이종선;이종민;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.747-752
    • /
    • 2003
  • Many clinical studies have suggested that the blood flow in ideal geometry is involved in the development of atherosclerosis. This study simulated blood flow in the abdominal artery with real geometry to investigate MWSS(mean wall shear stress), AWSS(amplitude of wall shear stress) and OSI(oscillator shear index). The calculation grid for the real geometry was constructed by extracting the surface of arterial wall from CT(Computed Tomography) or MRI(Magnetic Resonance Imaging) sheets called as DICOM (Digital Imaging and Communications in Medicines). The calculated MWSS, AWSS and OSI are much different from those of ideal geometry calculation. The MWSS increased while the AWSS decreased. Many shear forces are related to shapes of gradient. This paper will give clinical datum where the MWSS, AWSS and OSI are strong or weak. The hemodynamic analysis based on real geometry can provide surgeons with more reliable information about the effect of blood flow.

  • PDF

Geometry optimization of a double-layered inertial reactive armor configured with rotating discs

  • Bekzat Ajan;Dichuan Zhang;Christos Spitas;Elias Abou Fakhr;Dongming Wei
    • Advances in Computational Design
    • /
    • 제8권4호
    • /
    • pp.309-325
    • /
    • 2023
  • An innovative inertial reactive armor is being developed through a multi-discipline project. Unlike the well-known explosive or non-explosive reactive armour that uses high-energy explosives or bulging effect, the proposed inertial reactive armour uses active disc elements that is set to rotate rapidly upon impact to effectively deflect and disrupt shaped charges and kinetic energy penetrators. The effectiveness of the proposed armour highly depends on the tangential velocity of the impact point on the rotating disc. However,for a single layer armour with an array of high-speed rotating discs, the tangential velocity is relatively low near the center of the disc and is not available between the gap of the discs. Therefore, it is necessary to configure the armor with double layers to increase the tangential velocity at the point of impact. This paper explores a multi-objective geometry design optimization for the double-layered armor using Nelder-Mead optimization algorithm and integration tools of the python programming language. The optimization objectives include maximizing both average tangential velocity and high tangential velocity areas and minimizing low tangential velocity area. The design parameters include the relative position (translation and rotation) of the disc element between two armor layers. The optimized design results in a significant increase of the average tangential velocity (38%), increase of the high tangential velocity area (71.3%), and decrease of the low tangential velocity area (86.2%) as comparing to the single layer armor.

신속성형기술 전용 벌집구조 형상 모델링 기술 개발 (Geometric Modeling of Honeycomb Structural Geometry for Solid Freeform Fabrication)

  • 지해성
    • 한국CDE학회논문집
    • /
    • 제4권3호
    • /
    • pp.180-189
    • /
    • 1999
  • Solid freeform fabrication technology, widely known as rapid prototyping an rapid tooling, can create physical part directly from digital model by accumulating layers of a given material. Providing a tremendous flexibility of a part geometry that they can fabricate, these technologies present a opportunity or the creation of new products that can not be made with existing technologies. For this to be possible, however, various design environments including different fabrication processes needs to be considered at the time of design, and finding an appropriate design solution for the new product by combining necessary design communications become increasingly complex as environmental condition become diverse. This paper proposes a geometric modeling paradigm for design and fabrication of a new product, honeycomb structural geometry.

  • PDF

삼각형 메쉬 상에서의 미분 연산자와 그 응용 (Differential Operators on a Triangular Mesh and Their Applications)

  • 백승엽;감동욱;이건우
    • 한국CDE학회논문집
    • /
    • 제20권1호
    • /
    • pp.44-54
    • /
    • 2015
  • Solving partial differential equations (PDEs) on a manifold setting is frequently faced problem in CAD, CAM and CAE. However, unlikely to a regular grid, solutions for those problems on a triangular mesh are not available in general, as there are no well-established intrinsic differential operators. Considering that a triangular mesh is a powerful tool for representing a highly-complicated geometry, this problem must be tackled for improving the capabilities of many geometry processing algorithms. In this paper, we introduce mathematically well-defined differential operators on a triangular mesh setup, and show some examples of their applications. Through this, it is expected that many CAD/CAM/CAE application will be benefited, as it provides a mathematically rigorous solution for a PDE problem which was not available before.