• Title/Summary/Keyword: Digital Chest Radiography

Search Result 65, Processing Time 0.025 seconds

Changes of Radiation Dose and Image Quality Due to Additional Filtration Material in Computed Radiography (Computed Radiography에서 Additional Filtration Material에 따른 Radiation Dose와 Image Quality의 변화)

  • Kwon, Soon-Mu;Cho, Hyung-Wook;Kang, Yeong-Han;Kim, Boo-Soon;Kim, Jung-Su
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.239-246
    • /
    • 2014
  • Filter absorbs low-energy X-ray to increase the average energy and reduces patient exposure dose. This study investigates if the materials of Mo and W could be used for the digital imaging device CR by conducting image assessment and dose measurement of SNR, FOM and histogram. In addition, measurement of beam quality was conducted depending on the material of the filter, and at the same time, a proper combination of filters was examined depending on the change in tube voltage (kVp). In regard to entrance skin dose, Mo filter showed the dose reduction by 42~56%, compared to Cu filter. Moreover, Mo filter showed higher transmission dose by around 1.5 times than that of Cu filter. In image assessment, it was found that W was unsuitable to be used as a filter, whereas Mo could be used as a filter to reduce dose without decline in image quality at the tube voltage of 80 kVp or higher. As tube voltage increased, 2.0 mm Al+0.1 mm Mo almost had a similar histogram width to that of 2.0 mm Al+0.2 mm Cu. Therefore, Mo filter can be used at relatively high tube voltage of 80 kVp, 100 kVp and 120 kVp. The SNR of 2.0 mm Al+0.1 mm Mo did not show any significant difference from those of 2.0 mm Al+0.2 mm Cu and 2.0 mm Al+0.1 mm Cu. As a result, if Mo filter is used to replace Cu filter in general radiography, where 80 kVp or higher is used for digital radiation image, patient exposure dose can be reduced significantly without decline in image quality, compared to Cu filter. Therefore, it is believed that Mo filter can be applied to chest X-ray and high tube voltage X-ray in actual clinical practice.

Is a Camera-Type Portable X-Ray Device Clinically Feasible in Chest Imaging?: Image Quality Comparison with Chest Radiographs Taken with Traditional Mobile Digital X-Ray Devices (카메라형 휴대형 X선 장치는 흉부 촬영에서 임상적 사용이 가능한가?: 기존의 이동형 디지털 X선 장치로 촬영한 흉부 X선 사진과 영상품질 비교)

  • Sang-Ji Kim;Hwan Seok Yong;Eun-Young Kang;Zepa Yang;Jung-Youn Kim;Young-Hoon Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.1
    • /
    • pp.138-146
    • /
    • 2024
  • Purpose To evaluate whether the image quality of chest radiographs obtained using a camera-type portable X-ray device is appropriate for clinical practice by comparing them with traditional mobile digital X-ray devices. Materials and Methods Eighty-six patients who visited our emergency department and underwent endotracheal intubation, central venous catheterization, or nasogastric tube insertion were included in the study. Two radiologists scored images captured with traditional mobile devices before insertion and those captured with camera-type devices after insertion. Identification of the inserted instruments was evaluated on a 5-point scale, and the overall image quality was evaluated on a total of 20 points scale. Results The identification score of the instruments was 4.67 ± 0.71. The overall image quality score was 19.70 ± 0.72 and 15.02 ± 3.31 (p < 0.001) for the mobile and camera-type devices, respectively. The scores of the camera-type device were significantly lower than those of the mobile device in terms of the detailed items of respiratory motion artifacts, trachea and bronchus, pulmonary vessels, posterior cardiac blood vessels, thoracic intervertebral disc space, subdiaphragmatic vessels, and diaphragm (p = 0.013 for the item of diaphragm, p < 0.001 for the other detailed items). Conclusion Although caution is required for general diagnostic purposes as image quality degrades, a camera-type device can be used to evaluate the inserted instruments in chest radiographs.

A Study on Protection Performance of Radiation Protective Aprons classified by Manufacturers and Lead Equivalent using Over Tube Type Fluoroscopy (Over Tube Type의 투시촬영장치를 이용한 제조사별, 납당량별 엑스선방어 앞치마의 Protection 성능 평가에 관한 연구)

  • Song, Jong-Nam;Seol, Gwang-Wook;Hong, Seong-Il;Choi, Jeong-Gu
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.135-141
    • /
    • 2011
  • If protective performance of apron cannot be good, radiation exposure of an guardian or a patient, a person engaged in radiation related industry cannot rise. Therefore, It will be evaluated protection performance to radiation protection aprons by manufacturers and lead equivalent more than 0.25mm lead equivalent. And, will show in the direction of application to clinic. The new aprons by manufacturers(H, X, I, J company) and lead equivalent(0.50mmPb, 0.35mmPb, 0.25mmPb) measured transmitted dose rate and shielding rate, uniformity under fluoroscopy and general radiography using to fluoroscopy system and digital radiography system, x-ray multifunction meter. The shielding rate measurement results, 0.5mmPb apron was Shielding rate of apron of a I company(fluoroscopy : 97.96%) was the best under six companies, and shielding rate of apron of a J company(fluoroscopy : 96.25%) was worst. 0.35mmPb Apron was Shielding rate of a I company(fluoroscopy : 96.79%) was the best under the three companies, and shielding rate of an H company(fluoroscopy : 95.81%) was the worst. 0.25mmPb Apron was Shielding rate of X company apron(fluoroscopy : 90.908%) was better than H company apron(fluoroscopy : 88.82%) than two companies. The uniformity measurement results, 0.5mmPb Aprons of X company(fluoroscopy : 0.13) and I company(fluoroscopy : 0.19) was the best under the six companies, and J company apron(fluoroscopy : 0.45) was the worst. 0.35mmPb. Along a manufacturer and lead equivalent performance of apron protection is distinguished certainly. Therefore, a patient, guardian or a person engaged in radiation related industry shall enforce experiment of a lot of ways defined or evaluation so that the maximum reduces radiation exposure. Buy the apron that protective performance is good, It will be performed through experiment and evaluation.

Evaluation of Image According to Exposure Conditions using Contrast-Detail Phantom for Chest Digital Radiography (흉부 디지털 방사선 촬영 시 C-D phantom을 이용한 촬영조건에 따른 영상 평가)

  • Lee, In-Ja;Kim, You-Hyun;Kim, Chang-Nam;Lee, Chang-Yeob;Park, Kye-Yeon
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • To find out proper photographing conditions in the chest DR imaging, the evaluation of images using the C-D phantom was carried out on relationship of identification capability, graininess, and exposure ratio. The conclusions were obtained as follows. 1. The patient's entrance skin Exposure (ESE) was decreased as tube voltage was increased. 2. According to the tube voltage change, the C-D phantom's identification capability of the exposure conditions was most visible at 110 kVp. 3. The identification capability according to the exposure ratio (mAs) change was most visible at 90 kVp for 0.5 times of low exposure ratio and at 110 kVp for 1.5 times. Therefore, it is known that the images were able to be better identified at a high exposure than a low exposure. 4. The graininess according to the exposure ratio at tube voltage of 110 kVp resulted in the best thing at 1.5 times of ratio when the exposure ratio was 1.5 times increased and the tube voltage was changed, the graininess showed the best result at 110 kVp. Therefore, the patient's exposure dose was low when kVp was increased and the adequate kVp was found to be 110. The image was better identified when exposure ratio was 1.5 times compared to 1.0 times. The graininess was also good when the exposure ratio became 1.5 times. The tube voltage was good at 110 kVp. However, once the exposure ratio is increased, the amount of radiation dose that the patients received get increased, so that the exposure condition has to be thoroughly considered.

  • PDF

Development of JPEG2000 Viewer for Mobile Image System (이동형 의료영상 장치를 위한 JPEG2000 영상 뷰어 개발)

  • 김새롬;정해조;강원석;이재훈;이상호;신성범;유선국;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.124-130
    • /
    • 2003
  • Currently, as a consequence of PACS (Picture Archiving Communication System) implementation many hospitals are replacing conventional film-type interpretations of diagnostic medical images with new digital-format interpretations that can also be saved, and retrieve However, the big limitation in PACS is considered to be the lack of mobility. The purpose of this study is to determine the optimal communication packet size. This was done by considering the terms occurred in the wireless communication. After encoding medical image using JPGE2000 image compression method, This method embodied auto-error correction technique preventing the loss of packets occurred during wireless communication. A PC class server, with capabilities to load, collect data, save images, and connect with other network, was installed. Image data were compressed using JPEG2000 algorithm which supports the capability of high energy density and compression ratio, to communicate through a wireless network. Image data were also transmitted in block units coeded by JPEG2000 to prevent the loss of the packets in a wireless network. When JPGE2000 image data were decoded in a PUA (Personal Digital Assistant), it was instantaneous for a MR (Magnetic Resonance) head image of 256${\times}$256 pixels, while it took approximately 5 seconds to decode a CR (Computed Radiography) chest image of 800${\times}$790 pixels. In the transmission of the image data using a CDMA 1X module (Code-Division Multiple Access 1st Generation), 256 byte/sec was considered a stable transmission rate, but packets were lost in the intervals at the transmission rate of 1Kbyte/sec. However, even with a transmission rate above 1 Kbyte/sec, packets were not lost in wireless LAN. Current PACS are not compatible with wireless networks. because it does not have an interface between wired and wireless. Thus, the mobile JPEG2000 image viewing system was developed in order to complement mobility-a limitation in PACS. Moreover, the weak-connections of the wireless network was enhanced by re-transmitting image data within a limitations The results of this study are expected to play an interface role between the current wired-networks PACS and the mobile devices.

  • PDF