• Title/Summary/Keyword: Digital Autopilot

Search Result 18, Processing Time 0.029 seconds

Design of an improved STT missile digital autopilot with respect to sampling time (샘플링 시간에 대해 개선된 Singular Perturbation 기반 STT missile 디지털 autopilot 설계)

  • 정선태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.468-471
    • /
    • 1997
  • In this paper, we investigate the time-sampling effects on the digital implementation of singular perturbation based STT autopilot with excellent performance and propose a compensation method for the time-sampling effects. In digitization of analog STT autopilot, it is found that the stability margin of the fast dynamics is mostly affected to lead to rapid decrease. Under the this analysis, a composite digital controller with additional compensator for fast dynamics is proposed to improve the time-sampling effect and a simulation verifies the result.

  • PDF

Adaptive and Digital Autopilot Design for Nonlinear Ship-to-Ship Missiles (비선형 함대함 미사일의 적응 디지털 제어기 설계)

  • Im, Ki-Hong;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.619-621
    • /
    • 2005
  • This paper proposes apractical design method for ship-to-ship missiles' autopilot. When the pre-designed analogue autopilot is implemented in digital way, theygenerally suffer from severe performance degradation and instability problem even for a sufficiently small sampling time. Also, aerodynamic uncertainties can affect the overall stability and this happens more severely when the nonlinear autopilot is digitally implemented. In order to realize a practical autopilot, two main issues, digital implementation problem and compensation for the aerodynamic uncertainties, are considered in this paper. MIMO (multi-input multi-output) nonlinear autopilot is presented first and the input and output of the missile are discretized for implementation. In this step, the discretization effect is compensated by designing an additional control input. Finally, we design a parameter adaptation law to compensate the control performance. Stability analysis and 6-DOF (degree-of-freedom) simulations are presented to verify the proposed adaptive autopilot.

  • PDF

Digital Autopilot Design Using $\delta$-Transformation ($\delta$변환에 의한 디지탈 자동조종 장치 설계)

  • 이명의;민종진;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.82-86
    • /
    • 1989
  • In this paper, digital autopilot design methods are investigated and a new method is suggested in order to improve existing problems. The method is based on .delta. transform (1) and overcome numerical problems occurring in the process of discretization. We illustrate design procedures using .delta. transform and suggest a hardware and software structure for digital autopilot implemented by microprocessor.

  • PDF

Digital Autopilot Implementation Using Microprocessor (마이크로프로세서을 이용한 디지털 자동조정장치의 실현)

  • 이명희;권오규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.281-291
    • /
    • 1992
  • This paper deals with the digital autopilot implementation for a launch vehicle. We propose a hardware and software system for digital autopilot implemented by microprocessor. The hardware system designed in this paper consists of CPU and memory board with 80286 MPU and 80287 NPU and I/O interface with A/D and D/A converters. The software system developed is composed of power-on self-test program, initializing program, interrupt service program, and control program. The performance of the overall system controlled by the digital autopilot implemented in this paper is evaluated via real-time simulations, which show that the control performances are satisfactory.

  • PDF

Analysis and Improvement of Time Sampling effects on Singular Perturbation based Control Systems - Its Aplication to Design of Singular Pertubation based STT Missible Digital Autopilot (특이섭동 기법 기반 제어 시스템에 대한 샘플링 영향 분석 및 개선 - 특이섭동 기법 기반 STT 미사일 디지털 자동조정장치 설계에의 적용)

  • Jeong, Seon-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.33-43
    • /
    • 2000
  • The guarantee of the fast dynamics stability is essential for successful application of singular Perturbation technique to control systems design. Even though the fast dynamics of the control systems is rendered stable by an analog controller, the fast dynamics stability of the control systems resulted from an digital implementation of the analog controller can be impaired severely. In this paper, we first investigate the time sampling effects on singular perturbation based control systems by centering on a design example of recently developed singular perturbation based STT missile autopilot with high performance. The investigation shows that the stability margin the fast dynamics of the STT misile autopilot system decreases rapidly as the sampling interval of discretizing the analog autopilot increases. Under this analysis, we propose a composite digital controller with compensation for the decreasing stability margin of the fast dynamics due to time sampling to achieve better performance with respect to sampling time. The improved performance of the proposed composite digital controller is verified by simulation. This result shows that one needs to investigate time sampling effects in the digital implementation of singular perturbation based controllder, and then can have benefit from the investigation.

  • PDF

Some Considerations on the P.I.D. type Autopilot (P.I.D.형 바동조타장치에 대한 약간의 고찰)

  • 이철영;김시화;김환수
    • Journal of the Korean Institute of Navigation
    • /
    • v.9 no.2
    • /
    • pp.13-26
    • /
    • 1985
  • The purpsoe of automatic steering system is to keep the ship's course stable with the minimum course error and rudder angle, and there have been a number of studies as to the optimal design and adjustment of the autopilot. Recently, modern control theories are being used widely in analyzing and designing the system. When a ship is at sea, autopilot installed on the ship plays an important role, particularly in the respect of economic aspects, that is, when the design and the adjustment of adjustable parameters are not conducted perfectly, the amount of loss in energy and the extension of sailing distance become large. Therefore the optimal design and adjustment of a autopilot are very important. Though P.I.D type autopilots are widely spread and generally used in modern ships, the suitability and the adjusting method are not clarified. In this paper the authors considered the stabilaity and the economical efficiency of the P.I.D. type autopilot and investigated various facts which should be considered at the time of designing and using the P.I.D. type autopilot through the digital computer simulation.

  • PDF

A Study on the Improvement of Pitch Autopilot Flight Control Law (세로축 자동조종 비행제어법칙 개선에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Lee, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1104-1111
    • /
    • 2008
  • The supersonic advanced trainer based on digital flight-by-wire flight control system uses aircraft flight information such as altitude, calibrated airspeed and angle of attack to calculate flight control law, and this information is measured by IMFP(Integrated Multi-Function Probe) equipment. The information has triplex structure using three IMFP sensors. Final value of informations is selected by mid-value selection logic to have more flight data reliability. As the result of supersonic flight test, pitch oscillation is occurred due to IMFP noise when altitude hold autopilot mode is engaged. This tendency may affect stability and handling quality of an aircraft during autopilot mode. This paper addresses autopilot control law design to remove pitch oscillation and these control laws are verified by non-real time simulation and flight test. Also, pitch response characteristics of pitch attitude hold autopilot mode is improved by upgrading the control law structure and feedback gain tuning during bank turn.

Experimental Study on Control of Autopilot System(I) (자동운항시스템의 제어에 관한 실험적 연구)

  • Han, Bong-Ju;Bae, Gyeong-Su;Kim, Hwan-Seong;Kim, Sang-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2449-2457
    • /
    • 1996
  • This paper presents a design method for autopilot control system in course change to the specified direction based on a robust digital servo controlmelthod incorporating the concept of the annihilator polynormial. The mathematicalmodel of ship turning motion is very complex in the view of practical control because it has time varying parameters, nonlinear and dead time terms. To apply the digital servo control method based on computer control, the model is linearized at an equilibrium point and discretized with appropriate sampling time. The control algorithm was evaluated on the basis of computer simulation for a model ship and the practical experiment was carried out with an image processing method for measurement of ship position in a water tank. The results of overall experiments show that the proposed control method will be one of good way to keep a track plotted in the map.

Dynamics Analysis of a Small Training Boat ant Its Optimal Control

  • Nakatani, Toshihiko;End, Makoto;Yamamoto, Keiichiro;Kanda, Taishi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.342-345
    • /
    • 2005
  • This paper describes dynamics analysis of a small training boat and a new type of ship's autopilot not only to keep her course but also to reduce her roll motion. Firstly, statistical analysis through multi-variate auto regressive model is carried out using the real data collected from the sea trial on an actual small training boat Sazanami after the navigational system of the boat was upgraded. It is shown that the roll motion is strongly influenced by the rudder motion and it is suggested that there is a possibility of reducing the roll motion by controlling the rudder order properly. Based on this observation, a new type of ship's autopilot that takes the roll motion into account is designed using the muti-variate modern control theory. Lastly, digital simulations by white noise are carried out in order to evaluate the proposed system and a typical result is demonstrated. As results of simulations, the proposed autopilot had good performance compared with the original data.

  • PDF

Implementation of Fuzzy Decoupling Digital Xontroller for Three Fin Torpedo (삼타어뢰의 퍼지 비연성 디지탈 제어기 구현)

  • 원태현;곽병철;구본순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1076-1079
    • /
    • 1993
  • A fuzzy digital controller is combined an autopilot system for compensating the cross coupling effect of the induced roll due to the dynamic characteristic of three fin torpedo. However the utilization of fuzzy chip has many interfacing problems with typical microprocessors of the guidance and control unit. Since a fuzzy digital controller on a microprocessor uses a finite word length A/D converters arul D/A converters, ADC and DAC may generate nonlinear effects such as deadband and limit cycle phenomena. In this paper, the robustness of fuzzy digital controller is tested with ADC a finite word length.

  • PDF