• Title/Summary/Keyword: Digital Aerial Photos

Search Result 65, Processing Time 0.027 seconds

On-Site vs. Laboratorial Implementation of Camera Self-Calibration for UAV Photogrammetry

  • Han, Soohee;Park, Jinhwan;Lee, Wonhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.349-356
    • /
    • 2016
  • This study investigates two camera self-calibration approaches, on-site self-calibration and laboratorial self-calibration, both of which are based on self-calibration theory and implemented by using a commercial photogrammetric solution, Agisoft PhotoScan. On-site self-calibration implements camera self-calibration and aerial triangulation by using the same aerial photos. Laboratorial self-calibration implements camera self-calibration by using photos captured onto a patterned target displayed on a digital panel, then conducts aerial triangulation by using the aerial photos. Aerial photos are captured by an unmanned aerial vehicle, and target photos are captured onto a 27in LCD monitor and a 47in LCD TV in two experiments. Calibration parameters are estimated by the two approaches and errors of aerial triangulation are analyzed. Results reveal that on-site self-calibration excels laboratorial self-calibration in terms of vertical accuracy. By contrast, laboratorial self-calibration obtains better horizontal accuracy if photos are captured at a greater distance from the target by using a larger display panel.

The Basic Research of Road Design Simulation Using Digital Aerial Photos (수치항공사진을 이용한 도로설계시뮬레이션의 기초적 연구)

  • Oh, Il-Oh;Kang, Ho-Yun;Choi, Hyun;Kang, In-Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.99-105
    • /
    • 2007
  • This research is about applying aerial photos to three-dimensional simulation of road design. Instead of existing road design approach using digital map, which inexactly represent some part of topography and landmarks, digital aerial photos are applied to three-dimensional road design to address such inexactness of the map. First of all, ortho-photos are made using aerial photos, and a digital elevation model is created by extracting DEM. Then, by applying the coordinates practically using in planar design to three-dimensional approach, this model will be much helpful in the analyses of road route and viewscape. In addition, through the use of Virtual GIS, many evaluation factors such as urban design, flora, soil, water channel or road shape, flood plan are used for examination, and the effectiveness of applying three-dimensional simulation based on such route design standard is to be reviewed. In this paper, a basic research about three-dimensional design of structures is performed, and through the three-dimensional design, some effective determination to decision-making was carried out. Hereafter, it appears some research regarding environment-friendly construction and design should be followed.

Mapping Herbage Biomass on a Hill Pasture using a Digital Camera with an Unmanned Aerial Vehicle System

  • Lee, Hyowon;Lee, Hyo-Jin;Jung, Jong-Sung;Ko, Han-Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.225-231
    • /
    • 2015
  • Improving current pasture productivity by precision management requires practical tools to collect site specific pasture biomass data. Recent developments in unmanned aerial vehicle (UAV) technology provide cost effective and real time applications for site specific data collection. For the mapping of herbage biomass (BM) on a hill pasture, we tested a UAV system with digital cameras (visible and near-infrared (NIR) camera). The field measurements were conducted on the grazing hill pasture at Hanwoo Improvement Office, Seosan City, Chungcheongnam-do Province, Korea on May 17 and June 27, 2014. Plant samples were obtained from 28 sites. A UAV system was used to obtain aerial photos from a height of approximately 50 m (approximately 30 cm spatial resolution). Normalized digital number (DN) values of Red and NIR channels were extracted from the aerial photos and a normalized differential vegetation index using DN ($NDVI_{dn}$) was calculated. The results show that the correlation coefficient between BM and $NDVI_{dn}$ was 0.88. For the precision management of hilly grazing pastures, UAV monitoring systems can be a quick and cost effective tool to obtain site-specific herbage BM data.

Land Cover Object-oriented Base Classification Using Digital Aerial Photo Image (디지털항공사진영상을 이용한 객체기반 토지피복분류)

  • Lee, Hyun-Jik;Lu, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.105-113
    • /
    • 2011
  • Since existing thematic maps have been made with medium- to low-resolution satellite images, they have several shortcomings including low positional accuracy and low precision of presented thematic information. Digital aerial photo image taken recently can express panchromatic and color bands as well as NIR (Near Infrared) bands which can be used in interpreting forest areas. High resolution images are also available, so it would be possible to conduct precision land cover classification. In this context, this paper implemented object-based land cover classification by using digital aerial photos with 0.12m GSD (Ground Sample Distance) resolution and IKONOS satellite images with 1m GSD resolution, both of which were taken on the same area, and also executed qualitative analysis with ortho images and existing land cover maps to check the possibility of object-based land cover classification using digital aerial photos and to present usability of digital aerial photos. Also, the accuracy of such classification was analyzed by generating TTA(Training and Test Area) masks and also analyzed their accuracy through comparison of classified areas using screen digitizing. The result showed that it was possible to make a land cover map with digital aerial photos, which allows more detailed classification compared to satellite images.

A Production of Orthophoto Map from Aerial Photos using Digital Photogrammetry Technique (수치사진측양기법(數値寫眞測量技法)에 의한 항공사진(航空寫眞)으로부터 정사투영사진지도(正射投影寫眞地圖)의 제작(製作))

  • Yeu, Bock-Mo;Lee, Hyun-Jik;Jeong, Soo;Jo, Hong-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.1 s.3
    • /
    • pp.73-80
    • /
    • 1994
  • Most terrain information have been generally acquired by map. Because the map presents the real terrain, not by real figure but by contours, geometric figures, symbols, texts, and colors, it is not easy to interpret the real terrain by map. For this reason, aerial photos or terrestrial photos also have been used sometimes in the terrain analysis. But photos have geometrical displacement caused by the position of camera at the exposition time and the relief of the object. So, for accurate posional analysis, orthophoto maps produced by optical rectifier have been used. But, it is hard to produce orthophoto map by optical rectifier and the process is so slow. This study aims to present an accurate and rapid method to produce orthophoto map by generating digital elevation model from stereo aerial photos on common computer using the digital photogrammetric technique and producing orthophoto map digitally using the digital elevation model.

  • PDF

A STUDY ON THE ANALYSIS OF DIGITAL AERIAL PHOTO USING IMAGE SEGMENTATION (영상분할기법을 이용한 수치항공영상 해석에 관한 연구)

  • Kwon, Hyun;Lee, Hyun-Jik;Park, Hyo-Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.2 s.4
    • /
    • pp.131-142
    • /
    • 1994
  • Generally, there are two methods which generates the base map of Geo-Spatial Information System(GSIS). one is the digitizing of existing map, and the other is the analytical plotting method editing data acquired by sensors using computers. But the analytical plotting method and method of the digitizing of existing map is technically complex and has the disadvantages in the costs and time. The subject region of study(the Kwangyang province), was photographed by aircraft, and photographing scale was 1/6,000. Then this area was divided into two specific regions, the residential area, and the agricultural area. In this study, we developed the algorithm that generated base map of database in GSIS from the aerial photo. This algorithm is as followed. First, the digital aerial photos were generated using these aerial photos. Second, these digital aerial photos were enhanced by implementing the histogram equalization. Third, the objects of the enhanced images were extracted by implementing thresholding and edged detection techiques of image segmentation. Finally, these images could be used to updated the base map of database in GSIS. The result obtained from this study showed that method used by this study were more efficient than existing method in costs and time.

  • PDF

On-site Demonstration of Topographic Surveying Techniques at Open-pit Mines using a Fixed-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)를 이용한 노천광산 지형측량 기술의 현장실증)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.527-533
    • /
    • 2015
  • This study performed an on-site demonstration of the topographic surveying technique at a large-scale open-pit limestone mine in Korea using a fixed-wing unmanned aerial vehicle (UAV, Drone, SenseFly eBee). 288 sheets of aerial photos were taken by an automatic flight for 30 minutes under conditions of 300 m altitude and 12 m/s speed. Except for 37 aerial photos in which no keypoint was detected, 251 aerial photos were utilized for data processing including correction and matching, then an orthomosaic image and digital surface model with 7 cm grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 4 ground control points measured by differential global positioning system and those determined by fixed-wing UAV photogrammetry revealed that the root mean squared errors were around 15 cm. Because the fixed-wing UAV has relatively longer flight time and larger coverage area than rotary-wing UAVs, it can be effectively utilized in large-scale open-pit mines as a topographic surveying tool.

The Generation of Digital Orthophotos and Three Dimensional Models of an Urban Area from Digital Aerial Photos

  • Lee, Jin-Duk
    • Korean Journal of Geomatics
    • /
    • v.2 no.2
    • /
    • pp.131-137
    • /
    • 2002
  • The digital photogrammetric products have been increasingly used as an accurate foundation for representing information associated with infrastructure management. The technological advances in merging raster and vector data within the framework of GIS have allowed for the inclusion of DTMs and digital orthophotos with vector data and its associated attributes. This study addresses not only generating DEMs and digital orthophotos but producing three dimensional building models from aerial photos of an urban area by employing the digital photogrammetric technology. DEMs and digital orthophotos were automatically generated through the process of orientations, image matching and so on, and then the practical problems, which must be solved especially in applying to urban areas, were considered. The accuracy of produced digital orthophotos was derived by using check points. Also three dimensional visualization imagery, which is useful in the landform analysis, and 3D building models were produced. Digital photogrammetric products would be used widely not only as GIS framework data layers by using the GIS link function which links attribute and image information in the database for applying to infrastructure management and but as geospatial data for especially 3D GIS in urban areas.

  • PDF

A Method of Ground Boundary Construction using Digital Aerial Photos (디지털항공사진을 이용한 지상경계 구축 방안)

  • Yeon, sang-ho;Min, kwan-sik;Jeong, in-jun;Jeong, seung-hyeon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2010.05a
    • /
    • pp.624-626
    • /
    • 2010
  • 본 연구에서는 다차원공간정보의 하나인 디지털항공정사사진을 이용하여 필지별 지상경계를 생성하여 지상점유 토지의 형상을 확인해 보고자한다. 이는 필지의 관리적 측면에서 정확한 정보로써의 가치제고와 효용을 높이는데 있다.

  • PDF

Application of a Deep Learning Method on Aerial Orthophotos to Extract Land Categories

  • Won, Taeyeon;Song, Junyoung;Lee, Byoungkil;Pyeon, Mu Wook;Sa, Jiwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.443-453
    • /
    • 2020
  • The automatic land category extraction method was proposed, and the accuracy was evaluated by learning the aerial photo characteristics by land category in the border area with various restrictions on the acquisition of geospatial data. As experimental data, this study used four years' worth of published aerial photos as well as serial cadastral maps from the same time period. In evaluating the results of land category extraction by learning features from different temporal and spatial ranges of aerial photos, it was found that land category extraction accuracy improved as the temporal and spatial ranges increased. Moreover, the greater the diversity and quantity of provided learning images, the less the results were affected by the quality of images at a specific time to be extracted, thus generally demonstrating accurate and practical land category feature extraction.