• Title/Summary/Keyword: Digital Aerial Image

Search Result 262, Processing Time 0.025 seconds

A Study on Detection and Resolving of Occlusion Area by Street Tree Object using ResNet Algorithm (ResNet 알고리즘을 이용한 가로수 객체의 폐색영역 검출 및 해결)

  • Park, Hong-Gi;Bae, Kyoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.77-83
    • /
    • 2020
  • The technologies of 3D spatial information, such as Smart City and Digital Twins, are developing rapidly for managing land and solving urban problems scientifically. In this construction of 3D spatial information, an object using aerial photo images is built as a digital DB. Realistically, the task of extracting a texturing image, which is an actual image of the object wall, and attaching an image to the object wall are important. On the other hand, occluded areas occur in the texturing image. In this study, the ResNet algorithm in deep learning technologies was tested to solve these problems. A dataset was constructed, and the street tree was detected using the ResNet algorithm. The ability of the ResNet algorithm to detect the street tree was dependent on the brightness of the image. The ResNet algorithm can detect the street tree in an image with side and inclination angles.

Automatic Co-registration of Existing Building Models and Digital Image (건물 모델과 디지털 영상간의 자동정합 방법)

  • Jung, Jae-Wook;Sohn, Gun-Ho;Armenakis, Costas
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • With recent advancement of remote sensing technology, a variety of data acquisition over the same area is achievable. An automated co-registration of heterogeneous airborne images is a critical step for change detection. This paper describes an automatic method for co-registration between digital image and existing building model. Optimal building models for co-registration purpose are extracted as primitives from existing building model database. A set of homologous features between straight lines extracted from aerial digital image and model primitive are computed based on geometric similarity function. With obtained homologous features, EO parameter is recomputed using least square method. The result shows that die suggested method automatically co-register two data set in a reliable manner.

MEASURING CROWN PROJECTION AREA AND TREE HEIGHT USINGLIDAR

  • Kwak Doo-Ahn;Lee Woo-Kyun;Son Min-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.515-518
    • /
    • 2005
  • LiDAR(Light Detection and Ranging) with digital aerial photograph can be used to measure tree growth factors like total height, height of clear-length, dbh(diameter at breast height) and crown projection area. Delineating crown is an important process for identifying and numbering individual trees. Crown delineation can be done by watershed method to segment basin according to elevation values of DSMmax produced by LiDAR. Digital aerial photograph can be used to validate the crown projection area using LiDAR. And tree height can be acquired by image processing using window filter$(3cell\times3cell\;or\;5cell\times5cell)$ that compares grid elevation values of individual crown segmented by watershed.

  • PDF

Parcel Boundary Demarcation in Residential Area Using High Resolution Aerial Images (고해상도 항공영상을 이용한 주거지역 필지경계 설정에 관한 연구)

  • Park, Chiyoung;Lee, Jaeone
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.59-68
    • /
    • 2015
  • As part of an effort to leap smart cadastre system by doing rearrangement of various mismatches in the land register, the cadastre renovation project is being recently conducted. In response to this demand, this paper proposes an image-based rapid parcel boundary demarcation plan using the high resolution aerial image with a GSD (Ground Sample Distance) of 5cm that matches to real ground boundary situation in residential area. To review the feasibility and accuracy of this proposed methodology, we compared the accuracy of parcel boundary point and parcel area extracted from the digital stereo plotting on the basis of results of cadastral boundary surveying and land register over the selected two test areas. The comparative accuracy result of all boundary points by digital stereo plotting is satisfied with accuracy requirement according to the criteria of the enforcement regulation of cadastral surveying, whereas it exceeded allowable error of ${\pm}0.07m$, more strictly specified in the Special Act on Cadastral Renovation. And about 20% of the total 70 parcels extracted by digital plotting are out of area tolerance in Jecheon study area, and 10% of the total 19 parcels in Suwon study area. The parcels exceeding accuracy limit are mostly due to the occlusion caused by building roof or eaves, and the obstacles such as trees existing on the boundary. Furthermore, an object identification is impossible in image because of vague boundary reference in case of nonexistence of man-made structures or natural features. Therefore, the utilization of boundary identification stickers is recommended as a solution for these types of land parcel.

Construction of 3D Geospatial Information for Development and Safety Management of Open-pit Mine (노천광산 개발 및 안전관리를 위한 3차원 지형정보 구축 및 정확도 분석)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • Open pit mines for limestone mining require rapid development of technologies and efforts to prevent safety accidents due to rapid deterioration of the slope due to deforestation and rapid changes in the topography. Accurate three-dimensional spatial information on the terrain should be the basis for reducing environmental degradation and safe development of open pit mines. Therefore, this study constructed spatial information about open pit mine using UAV(Unmanned Aerial Vehicle) and analyzed its utility. images and 3D laser scan data were acquired using UAV, and digital surface model, digital elevation model and ortho image were generated through data processing. DSM(Digital Surface Model) and ortho image were constructed using image obtained from UAV. Trees were removed using 3D laser scan data and numerical elevation models were produced. As a result of the accuracy analysis compared with the check points, the accuracy of the digital surface model and the digital elevation model was about 11cm and 8cm, respectively. The use of three-dimensional geospatial information in the mineral resource development field will greatly contribute to effective mine management and prevention of safety accidents.

Evaluation of Possibility of Large-scale Digital Map through Precision Sensor Modeling of UAV (무인항공기 정밀 센서모델링을 통한 대축척 수치도화 가능성 평가)

  • Lim, Pyung-chae;Kim, Han-gyeol;Park, Jimin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1393-1405
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicle) can acquire high-resolution images due to low-altitude flight, and it can be photographed at any time. Therefore, the UAV images can be updated at any time in map production. Due to these advantages, studies on the possibility of producing large-scale digital maps using UAV images are actively being conducted. Precise digital maps can be used as base data for digital twins or smart cites. For producing a precise digital map, precise sensor modeling using GCPs (Ground Control Points) must be preceded. In this study, geometric models of UAV images were established through a precision sensor modeling algorithm developed in house. Then, a digital map by stereo plotting was produced to evaluate the possibility of large-scale digital map. For this study, images and GCPs were acquired for Ganseok-dong, Incheon and Yeouido, Seoul. As a result of precision sensor modeling accuracy analysis, high accuracy was confirmed within 3 pixels of the average error of the checkpoints and 4 pixels of the RMSE was confirmed for the two study regions. As a result of the mapping accuracy analysis, it satisfied the 1:1,000 mapping accuracy announced by the NGII (National Geographic information Institute). Therefore, the precision sensor modeling technology suggested the possibility of producing a 1:1,000 large-scale digital map by UAV images.

Extraction of Building Height Using Digital Map and Single Imagery (수치지도와 단영상을 이용한 건물의 고도값 추출)

  • Yun Kong-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2006
  • Recently the extraction of building height information has been investigated using remotely sensed image and digital maps. In this study, based on the digital photogrammetry principle and mono imagery method the building height information can be extracted by using relationship between ground coordinates and image coordinates. To evaluate the result the comparison was done with building height from 1:5000 aerial photo. The experiment shows that extraction of building height could be performed using IKONOS single imagery and digital map and it is proved that the building height could be reconstructed within some extent.

Automatic Building Reconstruction with Satellite Images and Digital Maps

  • Lee, Dong-Cheon;Yom, Jae-Hong;Shin, Sung-Woong;Oh, Jae-Hong;Park, Ki-Surk
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.537-546
    • /
    • 2011
  • This paper introduces an automated method for building height recovery through the integration of high-resolution satellite images and digital vector maps. A cross-correlation matching method along the vertical line locus on the Ikonos images was deployed to recover building heights. The rational function models composed of rational polynomial coefficients were utilized to create a stereopair of the epipolar resampled Ikonos images. Building footprints from the digital maps were used for locating the vertical guideline along the building edges. The digital terrain model (DTM) was generated from the contour layer in the digital maps. The terrain height derived from the DTM at each foot of the buildings was used as the starting location for image matching. At a preset incremental value of height along the vertical guidelines derived from vertical line loci, an evaluation process that is based on the cross-correlation matching of the images was carried out to test if the top of the building has reached where maximum correlation occurs. The accuracy of the reconstructed buildings was evaluated by the comparison with manually digitized 3D building data derived from aerial photographs.

Parcel Boundary Demarcation in Agricultural Area Using High Resolution Aerial Images and Aerial Targets (고해상도 항공영상과 항공타겟을 이용한 농경지 필지경계 설정에 관한 연구)

  • PARK, Chi-Young;LEE, Jae-One
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.80-93
    • /
    • 2016
  • Parcel boundary demarcation in agricultural area is commonly performed by terrestrial surveying methods, which have been pointed out as drawbacks to require consuming too much time and heavy expenditure. With the developments of high performance digital aerial cameras, however, studies on cadastral boundary demarcation with an aerial photogrammetric method attract a great attention in recent years. In this paper, an approach is presented to rapidly demarcate parcel boundaries coinciding with real ground ones in agricultural areas by extracting boundaries from the high resolution aerial orthoimages based on aerial targets. In order to investigate the feasibility of the proposed method, the accuracy of coordinates and area of parcel boundaries extracted from the aerial targets appeared in orthoimages compared with that of terrestrial boundary surveying results over the selected two test agricultural areas. Aerial image data were processed taken by a ADS80 digital camera with a GSD of 8cm in Changwon region, and by a DMCII camera with a GSD of 5cm in Suwon respectively. The result shows that the accuracy of parcel demarcation using aerial images is within the tolerance limits of coordinates and areas compared with that of terrestrial surveying. The proposed method using aerial target-based high resolution aerial images is therefore expected to be usefully applied in the agricultural parcel demarcation.

Confidence Improvement of SCM(Serial Cadastral Map) Using Orthphoto (정사사진을 이용한 연속지적도 신뢰성 향상)

  • 김감래;라용화;안병구;박세진
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.541-546
    • /
    • 2004
  • This study compare the coordination and area between cadastral map digital data corrected by normal nap and serial cadastral map edited by formal data. By superposition ortho image made from aerial photo to serial cadastral map, we propose the method to improve the confidence and use the ortho image efficiently in cadastral part.

  • PDF