• Title/Summary/Keyword: Digital Actuator

Search Result 184, Processing Time 0.031 seconds

Active Structural Vibration Control using Forecasting Control Method (예측 제어기법을 이용한 기계 구주물의 능동 진동제어)

  • 황요하
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.293-304
    • /
    • 1992
  • Active vibration control is presented with simulation and experiment. Dynamic Data System(DDS) method is used for system modeling and this model is combined with an forecasting control technique to derive a control equation. In the experiment, on-line digital computer monitors structural vibration and calculates control input. The control input is sent to an electromagnetic actuator which cancels the structural vibration. Experiment is performed first with a simple beam setup to demonstrate the effetiveness of this method. This method is then applied to a color laser printer to actively modify the structure. The beam experiment showed vibration reduction of over 60% with one-and two-DOF models. In the printer structure experiment, the first mode of 308 Hz was successfully controlled with a one-DOF model.

  • PDF

Repetitive Tracking Control of a High-Voltage Piezoelectric Actuator (고압 압전 구동기의 반복 추종 제어)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.173-176
    • /
    • 2008
  • The aim of this review is to acquaint a circuit designer with features of piezoelectric ceramic transformers(PT) and to show the general approach to the design of inverters utilizing PT as a circuit element. The description of the piezoelectric effect is not present here and can be easily found in numerous publications as well as complex equations and formulae. What is the most important to understand is that "they are different" - one cannot just change an electromagnetic transformer (EMT) for a piezoelectric one. Several examples of PT-based circuitry will help to start and use PT's advantages most effectively.

  • PDF

Technical Note : Development of Electric Riding Machine for Cycle Fitting (단신 : 사이클 피팅을 위한 전동 승차 조절기 개발)

  • Bae, Jae-Hyuk;Choi, Jin-Seung;Kang, Dong-Won;Seo, Jeong-Woo;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.373-378
    • /
    • 2012
  • The purpose of this study was to develop an electric riding machine for cycle fitting to control riding posture easily, to measure frame size quantitatively, and to overcome disadvantages of the traditional systems. The electric riding machine consisted of actuator, load controller, and display & control unit. The actuator unit by BLDC(BrushLess Direct Current) motor drives the saddle height up and down, the crank forward and backward, the handlebar up and down, and the handlebar forward and backward. The load controller unit controls loads by Eddy current controller with electromagnet and aluminum circular plate. The display & control unit consisted of frame size controller and display panel which shows top tube length(485~663mm), head tube length(85~243mm), seat tube length(481~671mm), and seat tube angle($62.7{\sim}76.4^{\circ}$). The range of frame size control for developed electric riding machine did not have difference compared to traditional commercial systems, but quantitative and precise control with 0.1 mm length and $0.1^{\circ}$ angle was possible through digital measurement. Unlike traditional commercial systems, frame size control was possible during riding through motor driven method, thus fitting duration decreased. It is necessary for further improvement to have feedback from users. It is believed that developed electric riding machine can help to develop domestic fitting system.

A Design of Piezo Driver IC for Auto Focus Camera System (디지털카메라의 자동초점제어를 위한 피에조 구동회로의 설계)

  • Lee, Jun-Sung
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.190-198
    • /
    • 2010
  • This paper describes a auto focus piezo actuator driver IC for portable digital camera. The 80[V] DC voltage is generated by a DC-DC converter and supplied to power of piezo moving control circuit. The voltage of piezo actuator needs range -20[V] to 80[V] proportional to 1[Vp-p] input control voltages. The dimensions and number of external parts are minimized in order to get a smaller hardware size. IIC(Inter-IC) interface logic is designed for data interface and it makes debugging easy, test for mass productions. The power consumption is around 40[mW] with supply voltage of 3.6[V]. This device has been fabricated in a 0.6[um] double poly, triple metal 100[V] BCD MOS process and whole chip size is 1600*1500 [$um^2$].

Digital Modeling of a Time delayed Continuous-Time System (시간 지연 연속 시간 시스템의 디지털 모델링)

  • Park, Jong-Jin;Choi, Gyoo-Seok;Park, In-Ku;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.211-216
    • /
    • 2012
  • Control Theory for continuous-time system has been well developed. Due to the development of computer technology, digital control scheme are employed in many areas. When delays are in control systems, it is hard to control the system efficiently. Delays by controller-to-actuator and sensor-to-controller deteriorate control performance and could possibly destabilize the overall system. In this paper, a new approximated discretization method and digital design for control systems with multiple state, input and output delays and a generalized bilinear transformation method with a tunable parameter are also provided, which can re-transform the integer time-delayed discrete-time model to its continuous-time model. Illustrative example is given to demonstrate the effectiveness of the developed method.

Indoor Environment Monitoring and Controlling System design and implementation based on Internet of Things (사물인터넷 기반 실내 환경 관제시스템 설계 및 구현)

  • Park, Jae-Woon;Kim, Dae-Sik;Joo, Nak-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.367-374
    • /
    • 2016
  • Recently, many people perform jobs including study and work within a common indoor space. Yet this space could have an adverse effect on operational efficiency as well as health because of many pollution factors. So maintaining a pleasant environment in the common space is important. In this thesis we study the integrated environment management system for better living conditions. This system analyzes and manages harmful environmental factors to make more pleasant environment in office, library or classroom. The proposed indoor environment management system will provide a pleasant environment by monitoring the indoor environment and driving the actuator in real time. In addition, it can be applicable to different types of indoor space to reach solutions to raise recognition of indoor environment pollution by people.

An Optical Microswitch Integrated with Silicon Waveguides, Micromirrors, and Electrostatic Touch-Down Beam Actuators (실리콘 광도파로, 미소거물 및 접촉식 정 전구동기가 집적된 광스위치)

  • Jin, Yeong-Hyeon;Seo, Gyeong-Seon;Jo, Yeong-Ho;Lee, Sang-Sin;Song, Gi-Chang;Bu, Jong-Uk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.639-647
    • /
    • 2001
  • We present an integrated optical microswitch, composed of silicon waveguides, gold-coaled silicon micromirrors, and electrostatic contact actuators, for applications to the optical signal transceivers. For a low switching voltage, we modify the conventional curled electrode microactuator into a electrostatic microactuator with touch-down beams. We fabricate the silicon waveguides and the electrostatically actuated micromirrors using the ICP etching process of SOI wafers. We observe the single mode wave propagation through the silicon waveguide with the measured micromirror loss of $4.18\pm0.25dB$. We analyze major source of the micromirror loss, thereby presenting guidelines for low-loss micromirror designs. From the fabricated microswitch, we measure the switching voltage of 31.74V at the resonant frequency of 6.89kHz. Compared to the conventional microactuator, the present contact microactuator achieves 77.4% reduction of the switching voltage. We also discuss a feasible method to reduce the switching voltage to 10V level by using the electrode insulation layers having the residual stress less than 30MPa.

  • PDF

Development of the Dynamometer Control System for Medium Speed Diesel Engines

  • Choi, Sang-Gu;Ryu, Sang-Hun;Kim, Jeom-Goo;Park, Ho-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.243-247
    • /
    • 2004
  • The dynamometers which had made in a long time ago could not control the input/output quantity of water minutely and was sensitive to a noise since it was controlled by an analog control method. Therefore, a fully digital controlled system was urgently required to be robust against various noises. In this paper, the new system which can control the amount of circulated water in dynamometer was developed. This system is consisted of an industrial digital type controller and a servo motor. The industrial PLC was used as a main controller for the developed system, and the actuator and servo motor were used to control the inlet and outlet valve independently. The torque signal of load cell was fed back to the main controller to regulate the diesel engines load. Generally, an input/output valve position of the old dynamometer was fixed with a proper situation for an engine output test and the torque was changed according to the time interval. However, the torque value for the dynamometer could not be constantly kept because of the variation of the input water flow and fluid characteristic. Therefore, the automatic control of an inlet and outlet valve should be performed to keep the constant torque. So, the PID control method was applied to solve this problem. Also, the development of a web-based remote control system was described in this paper. This software will give us the convenience of operation, the more efficient operations, and the reduced operator workload for operation of the dynamometer. The application results of the system have been verified at actual diesel engine field.

  • PDF

Design and Implementation of Smart Green House Management System Based on Open Source Hardware (오픈 소스 하드웨어 기반의 스마트 온실관리 시스템 설계 및 구현)

  • Park, Jung-Woong;Choe, Young-Min;Park, Hee-Dong
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.259-264
    • /
    • 2016
  • In this paper, we proposed an arduino-based smart green house management system model and implemented it. The proposed system consists of control unit composed of sensors and arduino, agent program controlling the green house, and web applications providing user interfaces. The control unit transmits data of sensors such as temperature, humidity, illuminance, moisture, etc. to the agent program, and then the agent saves the data in its database. In reverse, control data are transmitted from agent program to control unit. Users can monitor sensed data of green houses and control actuators remotely using web. Plus, smart green house management is available by context awareness and autonomous control functions of the proposed system.

Joystick Control Algorithm for Berthing and Unberthing of Waterjet Propelled Unmanned Surface Vehicle Using Actuator Nonlinear Model (구동기 비선형 모델을 이용한 워터제트 추진 무인수상정의 조이스틱기반 이접안 제어 알고리즘)

  • Seong-Jin Ahn;Mooncheol Won;Sun Young Kim;Hansol Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.165-174
    • /
    • 2023
  • Unmanned Surface Vehicle (USV)'s berthing and unberthing is the most difficult maneuvering tasks and have the highest risk of accidents. In this paper, we designed a berthing/unberthing control algorithm given human joystick command for an USV equipped with a waterjet and a bow thruster. The berthing and unberthing maneuvers are performed remotely by a joystick operator at the Ground Control Center (GCC) where the status of USV and environmental situation can be monitored. We interpret the human joystick commands into USV's desired speed, yaw rate, and heading angle commands. next, we developed a control algorithm for the desired target values of MIMO actuators (engine speed, bucket step, nozzle angle, and bow thruster state) to follow the interpreted commands. The validity of the control algorithm is confirmed through simulations and sea trials at Gwang Am port.