A novel esterase gene, est01, was successfully unearthed from a biogas digester microbiota metagenomic library. The 1,194 bp est01 gene encodes a protein of 44,804 Da (designated Est01). The amino acid sequence of Est01 shows only moderate (33%) identity to a lipase/esterase. Phylogenetic analysis and biochemical characterization confirmed that Est01 is a new member of family VIII esterases. The purified Est01 from recombinant Escherichia coli BL21 (DE3) showed high hydrolytic activity against short-chain fatty acid esters, suggesting that it is a typical carboxylesterase rather than a lipase. Furthermore, the Est01 was even active at $10^{\circ}C$ (43% activity remained), with the optimal temperature at $20^{\circ}C$, and had a broad pH range from 5.0 to 10.0, with the optimal pH of 8.0. These properties suggest that Est01 is a cold-adaptive esterase and could have good potential for low-temperature hydrolysis application.
An experimental study of biofilm nitritation system for high-strength ammonium wastewater has been carried out to examine the temperature effect on different organic and solid concentration. Operating temperature varied from $35^{\circ}C$ to $15^{\circ}C$. The influent N concentration of identical three reactors was adjusted to about $300mg\;NH_4-N/L$. A control unit fed with a synthetic wastewater, while the others were fed with reject water which is consisted of the supernatant of both digester and thickener. The results indicated that nitrite accumulation was stable in temperature range of $35^{\circ}C$ to $25^{\circ}C$. However, nitritation was significantly reduced at below $20^{\circ}C$. Free ammonia (FA) and free nitrous acid (FNA) were major inhibitors to the nitrite oxidizer for nitrite accumulation in lower temperature. From the estimation of temperature coefficient (${\Theta}$) of biofilm and suspended nitritation system, biofilm nitritation system could absorb the negative temperature effect compared with suspended nitritation system.
This study was made to evaluate the temperature effects on anaerobic digestion of swine manure. A laboratory single-stage, high-rate, anaerobic digester was operated at 10, 20 and 30 day's HRT at the temperature of 35$\circ$C or 55$\circ$C. The conclusions from this study are as follows: (1) COD and BOD reductions were similar in both the mesophilic and thermophilic digestions. (2) With thermophilic digestion, volatile reduction increased to 67%, as compared with 60% of mesophilic digestion. With thermophilic digestion, the pH increased to 8.5 as compared with 8.0 of mesophilic digestion. With thermophilic digestion, the concentration of volatile acid increased to 763 mg/l, as compared with 250 mg/l of mesophilic digestion. While the gas was produced by mesophilic digestion at 0.74m$^3$/kg of VS fed, it increased to 0.87 m$^3$/kg VS fed by thermophilic digestion. The refractory VS was about 25% of the infiuent VS.
Biogas created from animal waste is a precious energy source. A practical and successful utilization of the biogas is not easy, because there lie some difficulties in biogas production and facilities investment. In this study, the requisites for a successful biogas utilization were discussed. The production results obtained in the previous operation of anaerobic digestion plant were used for the simulation. When the slurry heating was designed for constant biogas generation, depreciation costs of the facilities amounted 1,175,000 yen per year, and biogas productions at $24.5^{\circ}C$, $30.0^{\circ}C$ and $35.5^{\circ}C$ were $16.8m^3$, $17.6m^3$ and $25.1m^3$, respectively. Removal ratios of organic matters were not so high. At $35.5^{\circ}C$, energy value of the biogas produced was estimated 125.5 Mcal per day, and the following heat loss (y Mcal/day) was brought about by the temperature difference ($X^{\circ}C$) between the digester and atmosphere; y = 0.769X - 5.375. The costs of biogas production per cow were assumed to decrease according to enlargement of feeding scale, especially on scales of more than 30 cows. On recent levels of costs and prices of energy in Japan, they were nearly equal to 2 to 3 fold of the price of municipal mixed gas when a anaerobic digester was compulsorily heated and kept at $30.0^{\circ}C$ or $35.5^{\circ}C$.
Joo, Yeong-Hee;Jeon, Yong-Woon;Calilung, Edwin J.;Elepano, Arnold R.
Korean Journal of Soil Science and Fertilizer
/
v.18
no.4
/
pp.325-335
/
1985
Biogas production from agricultural wastes were summarized as follows: 1. Biogas Generation Characteristics of Various Manures and Residues a. Gas yield from crop residues like rice straw, rice hull, corn stalk and coconut husk can be improved by addition of animal manures. b. Gas yield from coconut husk can be improved through aerobic fermentation for at least one week before loading in the digester. c. Gas yield from fresh rice straw is better than from pre-fermented one, whether alone or in combination with animal manures. d. Initial study has shown that fresh azolla can be substituted for animal manures in manurerice straw combinations and gas yield derived based on unit volatile solids loaded is actually better than for manure-residue combinations. e. Gas production is highly sensitive to substrate pH and becomes almost nil at a pH of below 6. 2. Effect of ambient conditions and other factors on biogas production in a house hold-size digester. a. Results showed that compaction of rice straw in straw-manure combination can reduce gas yield compared with loosely mixed straw. b. The effective gas production period extended to 70 days using freshly threshed rice straw and fresh cattle manure as feed material. c. Underground and above ground digesters with shade have relatively more stable substrate temperature than aboveground exposed digesters. This relative temperature instability may likely be the reason for lower gas yield for the exposed aboveground digester loaded with loose straw-cattle manure substrate, compared with the underground digester with the same substrate. 3. Economic Analysis a. Based on prevailing costs of fuel, materials, and labor in the Philippines, biogas produced from the household size system is cheaper than either LPG or kerosene. b. If other benefits like organic fertilizer, pollution control and convenience are considered, biogas will surely be the best alternative fuel source.
Journal of Korean Society of Environmental Engineers
/
v.34
no.3
/
pp.214-222
/
2012
Several acidogenesis batch tests, and BMP (Biochemical Methane Potential) with food waste leachate was tested at various organic loading rates (OLRs) on the mesophilic ($35^{\circ}C$) and thermophilic ($55^{\circ}C$) conditions. In acidogenesis batch test, VS removal efficiencies were 27.3% and 30.6% at $35^{\circ}C$ and $55^{\circ}C$, respectively. Removal efficiency of VS at $55^{\circ}C$ was higher than that at $35^{\circ}C$. With decrease in VS, SCOD increased as reaction time increased. Solubilization efficiency of VS were 27.4% and 33.4% at each reaction temperature within 4 days acid fermentation. Methane yield were 461 and 413 $mLCH_4/gVS$ at mesophilic and thermophilic BMP test, respectively. SCOD solubilizations in the themophilic acid fermenter showed 8~17% higher than those in the mesophilic fermenter. COD removal efficiency showed higher in the mesophilic acid fermenter at low organic loading rate. While at high organic loading rate, it was higher in the thermophilic acid fermenter. VS removal efficiency was higher at the mesophilic temperature, however, it decreased at OLR higher than 6 kg $COD/m^3{\cdot}day$. On the contrary, VS removal efficiency did not decrease but maintain at thermophilic temperature. The amount of methane gas generated from mesophilic methanogenesis digester was 12.6, 21.6, 27.4 L/day at OLR of 4, 5, 6 $COD/m^3{\cdot}day$, respectively. The amount of methane gas generated from themophilic methanogenesis digester was 14.3, 20.6, 25.2 L/day at each OLR, respectively, which is about 15~20 L/day lower than those generated at mesophilic digester.
Propionate is an important intermediate product during the methane fermentation of organic matter, and its degradation is crucial for maintaining the performance of an anaerobic digester. In order to understand the effect of temperature on propionate degradation, an upflow anaerobic sludge blanket (UASB) reactor with synthetic wastewater containing propionate as a sole carbon source was introduced. Under the hydraulic retention time (HRT) of 10 h and influent propionate of 2,000 mg/l condition, propionate removal was above 94% at 30-$35^{\circ}C$, whereas propionate conversion was inhibited when temperature was suddenly decreased stepwise from $30^{\circ}C$ to $25^{\circ}C$, to $20^{\circ}C$, and then to $18^{\circ}C$. After a long-term operation, the propionate removal at $25^{\circ}C$ resumed to the value at 30- $35^{\circ}C$, whereas that at $20^{\circ}C$ and $18^{\circ}C$ was still lower than the value at $35^{\circ}C$ by 8.1% and 20.7%, respectively. Microbial community composition analysis showed that Syntrophobacter and Pelotomaculum were the major propionate-oxidizing bacteria (POB), and most POB had not changed with temperature decrease in the UASB. However, two POB were enriched at $18^{\circ}C$, indicating they were low temperature tolerant. Methanosaeta and Methanospirillum were the dominant methanogens in this UASB and remained constant during temperature decrease. Although the POB and methanogenic composition hardly changed with temperature decrease, the specific $COD_{Pro}$ removal rate of anaerobic sludge (SCRR) was reduced by 21.4%-46.4% compared with the control ($35^{\circ}C$) in this system.
Chang, In-Seop;Kim, Do Hee;Kim, Byung Hong;Shin, Pyong Kyun;Yoon, Jung Hoon;Lee, Jung Sook;Park, Yong Ha
Microbiology and Biotechnology Letters
/
v.25
no.1
/
pp.1-8
/
1997
Carbon monoxide (CO)-utilizing acetogens were enriched and KIST612 isolated from anaerobic digester fluid was selected for its abilities to tolerate high CO and acetate concentration. The isolate KIST612 was identified as Eubacterium limosum based on the morphological and biochemical characteristics, G+C content of DNA and 16S rRNA sequence analysis. E. limosum KIST612 produced acetate and butyrate from CO. The optimum temperature and pH for the growth and acids formations were 37$\cdot $C and 7.0, respectively. The growth rate and acids productivity of E. limosum KIST612 were higher than those of any other known acetogens when CO was used as the sole energy and carbon source.
Disposal of blue crab wastes represents a significant problem to processors, who are limited with respect to acceptable disposal alternatives. Anaerobic bioconversion technology was investigated to determine an environmentally sound and economic disposal method for these wastes. In the study ultimate methane yield for total crab solid waste was $0.180m^3/kg$ VS added and biodegradation rate constant was $0.15day^{-1}$. Methane yield of the bench-scale reactor operated on similar feedstock was $0.189m^3/kg$ VS added and biodegradation rate constant was $0.06day^{-1}$. These results indicate that anaerobic bioconversion of blue crab wastes was technically feasible. Use of anaerobic bioconversion technology can be an attractive option for blue crab processing waste management. The by-product methane gas could be used for maintainign a number of processing operations (i.e., heat for cooking, or keeping temperature of digester constant).
Recently, in the semiconductor industry, memory device market is focusing on producing ultra-thin wafers for high integration. In the wafer manufacturing process, wafers after backgrinding and CMP process must be picked up as individual dies and subjected to be peeled off from the dicing tape. However, ultra-thin dies are vulnerable to the possibility of breakage and failure in their thickness and size. This research studies the mechanism of peeling a die with a high-aspect ratio using a thermopneumatic method instead of a die ejector with physical pins. Setting compressed air and the temperature as main factors, we determine the success of the digester using thermopneumatic system and analyze the good die to find the possibility of making mass-production equipment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.