• Title/Summary/Keyword: Diffusion dialysis

Search Result 32, Processing Time 0.026 seconds

Testosterone-encapsulated Surfactant-free Nanoparicles of Poly(DL-lactide-co-glycolide): Preparation and Release Behavior

  • Jeong, Young-Il;Shim, Yong-Ho;Song, Ki-Chan;Park, Youeng-Guen;Ryu, Hwa-Won;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1579-1584
    • /
    • 2002
  • Since surfactant or emulsifiers remained on the nanoparticle surface significantly affect the physicochemical properties, the biodegradation rate, the biodistribution, and the biocompatibility of nanoparticles, surfactant-free nanoparticles should be good candidate. surfactant-free PLGA nanoparticles were successfully prepared by both the dialysis method and the solvent diffusion method. The PLGA nanoparticles prepared using the solvent diffusion method has a smaller particle size than the dialysis method. The solvent diffusion method was better for a higher loading efficiency than the dialysis method but the nanoparticle yield was lower. Testosterone (TST) release from the PLGA nanoparticles was dependent on the particle size rather than the drug contents. Testosterone release from the PLGA nanoparticles prepared by the solvent diffusion method using acetone was faster than those prepared by the dialysis method. TST release from the PLGA nanoparticles prepared by the solvent diffusion method using acetone and the dialysis method using dimethylformamide (DMF) was completed for 4 days while the PLGA nanoparticles prepared by the dialysis method using acetone showed approximately 80% TST release after 4 days. Since the PLGA nanoparticle degradation ratio was below 20% within 5 days at all samples while TST release completed within 4 days, TST release was dependent on the diffusion mechanism rather than degradation.

A Study on the Determination of Ionic and Molecular Weight of Dissolved Substance by Dialysis Method (Ⅳ). Effects of Specific Surface Area and Pore Size of Dialysis Membrane on Dialysis (透析法에 依한 이온量 및 分子量의 決定에 關한 硏究 (第4報). 比表面積 및 透析膜孔이 透析에 미치는 影響)

  • Yun Kyoung Shin;Jhun Rhee;Taechun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.44-52
    • /
    • 1977
  • The effects of specific surface area and pore size of dialysis membrane on the dialysis were studied. It was confirmed that the intermittent sampling method(in which any volume of dialyzing solution is sampled intermittently at every moment after any duration of the dialysis experiment) is suitable for the determination of a dialysis coefficient. It was also confirmed that the diffusion coefficient of a electrolyte through membrane is smaller than the free diffusion coefficient though the pore size of dialysis membrane is extremely large.

  • PDF

In vitro release test models for water-insoluble drugs loaded in colloidal carriers

  • Lee, Jung-Min;Choi, Sung-Up;Lee, Byoung-Moo;Lee, Sung-Jae;Choi, Young-Wook
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.295.1-295.1
    • /
    • 2003
  • A suitable model for the estimation of the drug release from nanoparticles has been varied and problematic, especially for the release from lipid nanoparticles containing water-insoluble drugs, due to the difficult particle collection from the release medium. Dialysis membrane has been widely used for the release test from colloidal carrier systems. The amount of drug from the carriers in normal dialysis diffusion technique was very low typically. (omitted)

  • PDF

Manufacture Technology of Monoammonium phosphate from LCD Waste Acid (LCD 제조공정의 혼합폐산으로부터 일인산암모늄 제조 기술)

  • Lee, Ha-Young;Lee, Sang-Gil;Park, Sung-Kook;Kim, Ju-Han;Kim, Ju-Yup;Kim, Jun-Young
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.253-257
    • /
    • 2009
  • The waste solution discharged form the LCD(Liquid Crystal Display) manufacturing process contains phosphoric acid, nitric acid, acetic acid and metal ions such Al and other impurities. In this study, vacuum evaporation and diffusion dialysis was developed to commercialize an efficient system for recovering the high-purity phosphoric acid and manufacturing monoammonium phosphate. By vacuum evaporation, almost 99% of nitric and acetic acid was removed. Also, by diffusion dialysis, about 97.5% of Al was removed. Monoammonium phosphate was manufactured from purified phosphoric acid and ammonium hydroxide. In order to get the optimum manufacturing condition, the molar ratio of ammonium hydroxide and phosphoric acid, pH and temperature was controlled. Using this optimum condition, we obtained the recovery rate of monoammonium phosphate of about 90%.

Recovery of Nitric Acid from Waste Solder Stripper by Diffusion Dialysis (폐솔더 박리액으로부터 확산투석법에 의한 질산의 회수)

  • Ryu, Seong-Hyung;Kim, Tae-Young;Ahn, Nak-Kyoon;Gang, Myeong-Sik;Ahn, Jae-Woo;Ahn, Jong-Gwan
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.33-39
    • /
    • 2015
  • A basic study was conducted to effectively recover nitric acid from a waste solder stripper by diffusion dialysis using anion exchange membranes. The effects of flow rate, flux ratio, nitrate concentration, and metallic ion types and concentration on the recovery percentage of nitric acid were investigated. The recovery percentage of nitric acid was decreased with the increase of flow velocity. But the recovery percentage of nitric acid was increased as the increase of flux ratio(W/F) and showing a recovery percentage of nitric acid of about 99% at a flux ratio of 1.5 or more. As the increase of nitric acid concentration in feed solution, the recovery percentage of nitric acid was increased up to 3.0M, but in case of greater than 3.0M, the recovery percentage gradually was decreased. Leakage percentage of metallic ions through the membrane were in the order of Pb, Na and Cu but Fe and Sn did not leakaged. As a result of diffusion dialysis using real waste solder stripper at a flow rate of $0.9L/hr-m^2$, W/F = 1.3, a recovery percentage of nitric acid of approximately 94% was gained.

In Vivo Measurement of Site-Specific Peritoneal Solute Transport Using a Fiber-Optic-based Fluorescence Photobleaching Technique

  • Lee, Donghee;Kim, Jeong Chul;Shin, Eunkyoung;Ju, Kyung Don;Oh, Kook-Hwan;Kim, Hee Chan;Kang, Eungtaek;Kim, Jung Kyung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Fluorescence recovery after photobleaching (FRAP) is a well-established method commonly used to measure the diffusion of fluorescent solutes and biomolecules in living cells or tissues. Here a fiber-optic-based FRAP (f-FRAP) system was developed, and validated using macromolecules in water and agarose gels of different concentrations. We applied f-FRAP to measure the site-specific diffusion of fluorescein (NaFluo) in peritoneal membranes (PMs) on the liver, cecum, and kidney of a living rat during peritoneal dialysis. Diffusion of fluorescein in PM varied in a time-dependent manner according to the type of organ ($D_{PM\;on\;Liver}/D_{NaFluo}=0.199{\pm}0.085$, $D_{PM\;on\;Cecum}/D_{NaFluo}=0.292{\pm}0.151$, $D_{PM\;on\;Kidney}/D_{NaFluo}=0.218{\pm}0.110$). The proposed method allows direct quantitative measurement of the three-dimensional diffusion in local PM in vivo, which was previously inaccessible by peritoneal function test methods such as peritoneal equilibration test (PET) and standardized PM assessment (SPA). f-FRAP is promising for local and dynamic assessments of peritoneal pathophysiology and the mass transport properties of PMs, presumed to be affected by variation of tissue structures over different organs and functional changes of the PM with years of peritoneal dialysis.

Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method

  • Khan, Muhammad Imran;Wu, Liang;Hossain, Md. Masem;Pan, Jiefeng;Ran, Jin;Mondal, Abhishek N.;Xu, Tongwen
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.365-378
    • /
    • 2015
  • Herein, the preparation of anion exchange membrane (AEM) from brominated poly(2,6-dimethyl 1,6-phenylene oxide) BPPO and dimethylaniline (DMA) by phase-inversion process is reported. Anion exchange membranes (AEMs) are prepared by varying the DMA contents. Prepared AEMs show high thermal stability, water uptake (WR) around 202% to 226%, dimensional change ratios of 1.5% to 2.6% and ion exchange capacities (IECs) of 0.34 mmol/g to 0.82 mmol/g with contact angle of $59.18^{\circ}$ to $65.15^{\circ}$. These membranes are porous in nature as confirmed by SEM observation. The porous property of membranes are important as it could reduce the resistance of transportation of ions across the membranes. They have been used in diffusion dialysis (DD) process for recovery of hydrochloric acid (HCl) from the mixture of HCl and ferrous chloride ($FeCl_2$). Presence of $-N+(CH_3)_2C_6H_5Br^-$ as a functional group in membrane matrix facilitates its applications in DD process. The dialysis coefficients of hydrochloric acid ($U_H$) of the membranes are in range of 0.0016 m/h to 0.14 m/h and the separation factors (S) are in range of 2.09 to 7.32 in the $HCl/FeCl_2$ system at room temperature. The porous membrane structure and presence of amine functional group are responsible for the mechanism of diffusion dialysis (DD).

A Study on Transport Characteristics of Hydrochloric Acid in an Anion Exchange Membrane (음이온 교환막에서 염산의 이동특성 연구)

  • 강문성;오석중;문승현
    • Membrane Journal
    • /
    • v.8 no.3
    • /
    • pp.148-156
    • /
    • 1998
  • Diffusion dialysis is a membrane process driven by concentration difference using ion-exchange membranes and has been employed for many years for the acid recovery from acidic waste generated in steel, metal-refining and dectro-plating industries. Theoretically acid flux increases in propomon to the acid concentration difference. At acid concentrations higher than 3 N HCl, however, the acid flux had not increased linearly with the concentration difference. In this paper the effects of acid concentrations on diffusion dialysis for hydrochloric acid recovery and the acid transport mechanism in an anion exchange membrane were studied by membrane sorption tests and diffusion clialysis cell tests. The experimental results showed that the molecular diffusion was a major transport mechanism in a low acid concentration range and the proton leakage through an anion exchange membrane played an important role at higher acid concentrations. Also osmotic water transport and membrane dehydration retarded the transport of protons and caused the permeate flux to decrease.

  • PDF

Seven-year Survival Rate of On-line Hemodiafiltration

  • Yoon, Jung-Hwan;Kim, Nam-Ho
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.32-39
    • /
    • 2019
  • Conventional high-flux hemodialysis (HD) is not as good as normal kidney function. Morbidity and mortality rates of patients receiving HD are still very high. To increase mid-to-large molecule clearance by combining diffusion and convection, on-line hemodiafiltration (HDF) is required. The objective of this study was to compare long-term survival rate of patients treated with on-line HDF to those who received conventional high-flux HD by reviewing data from Chonnam National University Hospital (CNUH). We selected patients who attended the 'CUNH dialysis center' and agreed to participate in the study. Overall, 40 patients with ESRD switched from high flux HD to on-line HDF or started on-line HDF from August 2007 to December 2009. Additionally, a total of 42 patients receiving conventional high-flux HD during the same period were enrolled. We then reviewed long-term survival rate of patients receiving on-line HDF over the next seven years. When we compared survival rates for seven years, the survival rate of the group receiving on-line HDF was 65% (26/40) while that of the group receiving the conventional high-flux HD was 54.8% (23/42). Although the number of patients was small to see survival difference clearly by one specific dialysis modality, there was somewhat difference in survival rate between the two groups. Indicators such as anemia, calcium-phosphate metabolism, nutritional status, treatment adequacy, and hospitalization were also improved in the group receiving HDF. Overall, results of our study showed beneficial effects of on-line HDF on clinical outcomes and survival in chronic HD patients.

Modeling of continuous diffusion dialysis of aqueous solutions of sulphuric acid and nickel sulphate

  • Bendova, Helena;Palaty, Zdenek
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.267-279
    • /
    • 2011
  • At steady state, the simultaneous transport of sulphuric acid and nickel sulphate through an anion-exchange membrane Neosepta-AFN (Astom Corporation, Tokyo, Japan) was investigated in a two-compartment counter-current dialyzer with single passes. The transport was quantified by the recovery yield of acid, rejection of salt and four phenomenological coefficients, which were correlated with the acid and salt concentrations in the feed. The phenomenological coefficients were determined by the numerical integration of the basic differential equations describing the concentration profiles of the components in the dialyzer. This integration was combined with an optimizing procedure. The experiments proved that the acid recovery yield is in the limits from 63 to 91 %, while salt rejection is in the limits from 79 to 97 % in the dependence on the volumetric liquid flow rate and composition of the feed.