• Title/Summary/Keyword: Diffusion Loss

Search Result 315, Processing Time 0.025 seconds

Technology Diffusion Policies of Korea : Current Situation and Policy Directions (우리나라 기술확산정책의 현황과 전개방안)

  • 이공래
    • Proceedings of the Technology Innovation Conference
    • /
    • 1998.06a
    • /
    • pp.226-249
    • /
    • 1998
  • Technology diffusion policy can be defined as the role of government in linking knowledge production with usage. It has an importance due to the fact that linking knowledge between the producing agent and using agent does not automatically occur. If knowledge produced by an R&D agent is not used by somebody else, the knowledge may deteriorate to a social loss since knowledge production consumes a considerable degree of social resources. Explicit technology diffusion policies are not found in Korea. There we, however, a number of implicit policies to promote technology diffusion, mainly by promoting cooperation among universities, industries and research institutes. Government R&D programs have provided incentives for cooperative research projects, and many government sponsored institutes have been assigned the role of technology assistance for small and medium sized firms. Nevertheless, diffusion policies remain weak in comparison to other innovation and technology policies. This is reflected in the relatively small scale of government support for technology diffusion programs. In addition, there is no systematic approach between the different ministries for enhancing diffusion across technologies, institutions, sectors and regions. A comprehensive evaluation of government diffusion programs, which is necessary for improving policy and program design, is lacking. Enhancing the diffusion of technology in Korea will require the strengthening of policies at different levels, including; 1) increasing the orientation of science and technology policies towards diffusion; 2) increasing the scale of existing diffusion programs; 3) developing new diffusion programs, in particular sector-specific or manpower training programs; 4) developing policies to encourage a culture of cooperation that can facilitate technology diffusion; and 5) carrying out substantial policy research to develop diffusion policies.

  • PDF

Statistical Analysis on the trapping boundary of outer radiation belt during geosynchronous electron flux dropout : THEMIS observation

  • Hwang, Jung-A;Lee, Dae-Young;Kim, Kyung-Chan;Choi, Eun-Jin;Shin, Dae-Kyu;Kim, Jin-Hee;Cho, Jung-Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.90.2-90.2
    • /
    • 2012
  • Geosynchronous electron flux dropouts are most likely due to fast drift loss of the particles to the magnetopause (or equivalently, the "magnetopause shadowing effect"). A possible effect related to the drift loss is the radial diffusion of PSD due to gradient of PSD set by the drift loss effect at an outer L region. This possibly implies that the drift loss can affect the flux levels even inside the trapping boundary. We recently investigated the details of such diffusion process by solving the diffusion equation with a set of initial and boundary conditions set by the drift loss. Motivated by the simulation work, we have examined observationally the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropouts. For this work, we have first identified a list of geosynchronous flux dropout events for 2007-2010 from GOES satellite electron measurements and solar wind pressures observed by ACE satellite. We have then used the electron data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measurements to investigate the particle fluxes. The five THEMIS spacecraft sufficiently cover the inner magnetospheric regions near the equatorial plane and thus provide us with data of much higher spatial resolution. In this paper, we report the results of our investigations on the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropout events and discuss implications on the effects of the drift loss on the flux levels at inner L regions.

  • PDF

Measurement of Temperature in Double-concentric Diffusion Flames by Rapid Insertion Technique (급속 삽입범에 의한 동축 이중 확산화염 내부 온도 분포의 측정)

  • Chung, J.R.;Nam, P.W.;Lee, G.W.;Jurng, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.231-240
    • /
    • 1999
  • The temperature distribution in double-concentric diffusion flames have been investigated experimentally by rapid insertion technique. Using a fine thermocouple and rapid insertion mechanism, the temperature has been measured before soot particles attach the thermocouple junction which can affect the temperature signal by changing the radiation heat loss. For double-concentric diffusion flames, the temperature at the axis is higher than that of normal coflow diffusion flames because of the inverse diffusion flame at the center of the flame. However, it is almost same at the periphery on which the inverse flame does not have an effect.

  • PDF

Physical Property Models and Single Cells Analysis for Solid Oxide Fuel Cell (고체산화물 연료전지를 위한 물성치 모델 및 단전지 해석)

  • Park, Joon-Guen;Kim, Sun-Young;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.379-381
    • /
    • 2009
  • The simulation model for metal-supported Solid Oxide Fuel Cell(SOFC) is developed in this study. Open circuit voltage is calculated using Nernst equation and Gibbs free energy is required by thermodynamic. The exchange current densities are compared with experimental results since exchange current density is most effective factor for the activation loss. Liu's study is used for the exchange current density of cathode, BSCF, and Koide's result is applied for the exchange current density of anode, Ni/YSZ. For the ohmic loss, ionic conductivity of YSZ is described from Kilner's mode and the data are compared with Wanzenberg's experimental data. Diffusivity is an important factor for the mass transfer through the porous medium. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results.

  • PDF

Nonlinear Behaviors of Pulsating Instabilities in Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 대향류 확산화염의 맥동 불안정성의 비선형 거동)

  • Lee, Su Ryong;Park, Sung Cheon
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.9-16
    • /
    • 2012
  • Nonlinear dynamics of pulsating instability in radiating counterflow diffusion flames is numerically investigated by imposing Damk$\ddot{o}$hler number perturbation. Stable limit-cycle solutions occur in small ranges of Damk$\ddot{o}$hler numbers past bifurcation point of instability. Period doubling cascade and chaotic behaviors appear just before dynamic extinction occurs. Nonlinear dynamics is also studied when large disturbances are imposed to flames. For weak steady flames, the dynamic extinction range shrinks as the magnitudes of disturbances are increased. However, strong steady flames can overcome relatively large disturbances, thereby the dynamic extinction range extending. Stable limit-cycle behaviors reappears prior to dynamic extinction when the steady flames are strong enough.

BPM Analysis and Preparation of Low Loss $Ti:LiNbO_3$ Optical Waveguide (저손실 $Ti:LiNbO_3$ 광도파로제작 및 BPM 해석)

  • Kim, Seong-Ku;Yoon, Hyung-Do;Yoon, Dae-Won;Park, Gye-Choon;Lee, JIn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.400-406
    • /
    • 1998
  • We investigated the preparation and guided-mode properties of $Ti:LiNbO_3$ waveguides which were fabricated by Ti in-diffusion. The diffusion method to reduce the Li out-diffusion was proposed. The optical guided-mode and propagation loss based on butt-coupling pigtailed with PMF-input were measured. How to improve the polishing grade of waveguide endfaces is newly proposed in this paper. To show the mode propagations, the BPM simulations of channel waveguide are described.

  • PDF

Properties of Ti:$LiNbO_3$ Optical Waveguide by Diffusion in Air Atmosphere and Proposal of a Polishing Method (Air 분위기로 제작한 Ti:$LiNbO_3$ 도파로 특성 및 폴리싱 방법제안)

  • 김성구;윤형도;윤대원;한상필;박계춘;유용택
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.682-691
    • /
    • 1997
  • We have investigated the guided optical properties of a Ti:LiNbO$_3$optical waveguide which was fabricated by Ti-diffusion in an air atmosphere and proposed an effective polishing method of waveguide endfaces. And the results of guided optical mode and fabrication condition were obtained as follows; \circled1 propagation loss : 0.53 dB/cm \circled2 mode size : horizontal/vertical=12.5${\mu}{\textrm}{m}$ \circled3 mode mismatch : 1.7 dB \circled4 diffusion temperature : 105$0^{\circ}C$, time : 8 hours \circled5 atmosphere : air

  • PDF

Linear Stability Analysis of Cellular Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 셀모양 대향류 확산화염의 선형 안정성 해석)

  • Lee, Su Ryong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.42-50
    • /
    • 2013
  • Linear stability analysis of radiating counterflow diffusion flames is numerically conducted to examine the instability characteristics of cellular patterns. Lewis number is assumed to be 0.5 to consider diffusional-thermal instability. Near kinetic limit extinction regime, growth rates of disturbances always have real eigen-values and neutral stability condition of planar disturbances perfectly falls into quasi-steady extinction. Cellular instability of disturbance with transverse direction occurs just before steady extinction. However, near radiative limit extinction regime, the eigenvalues are complex and pulsating instability of planar disturbances appears prior to steady extinction. Cellular instability occurs before the onset of planar pulsating instability, which means the extension of flammability.

A Numerical Study on Effect of Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames at High Pressure (고압하에서 수소 확산화염의 소염에 미치는 복사 열손실 효과에 관한 수치적 연구)

  • Oh, Tae-Kyun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Extinction characteristics of hydrogen-air diffusion flames at various pressures are investigated numerically by adopting counterflow flame configuration as a model flamelet. Especially, effect of radiative heat loss on flame extinction is emphasized. Only gas-phase radiation is considered here and it is assumed that $H_2O$ is the only radiating species. Radiation term depends on flame thickness, temperature, $H_2O$ concentration, and pressure. From the calculated flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of $H_2O$ increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region, where flame is sustained, shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate. The present numerical results show that radiative heat loss can reduce the operating range of a combustor significantly.

Flammability Limits Variation of Opposed Flow Diffusion Flames for Different Channel Gap (채널 간격에 따른 대향류 확산화염의 가연 영역의 변화)

  • Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.323-324
    • /
    • 2012
  • Flammability limits of opposed flow diffusion flame in a narrow channel was investigated experimentally and theoretically. There were three different extinction modes corresponding to high strain rate (HSR), low strain rate (LSR) and dilution ratio (DR) limits. To investigate these limits, a theoretical study was followed by focusing on flow and heat transfer characteristics. Consequently, a dead space concept that has been used for premixed flames was important to reveal the heat loss mechanism in a narrow channel especially for LSR conditions even in the case of diffusion flames.

  • PDF