• Title/Summary/Keyword: Diffusion Flux

Search Result 342, Processing Time 0.029 seconds

Iontophoretic Transport of Ketoprofen (이온토포레시스를 이용한 케토프로펜의 경피전달)

  • Kim, Jung-Ae;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.4
    • /
    • pp.275-281
    • /
    • 2004
  • We have studied the effect of polarity, current density, current duration, crosslinking density, swelling ratio, and permeation enhancers on the transdermal flux of ketoprofen from acrylamide hydrogel. Hydrogel was prepared by free radical crosslinking polymerization of acrylamide. Drug loading was made just before transport experiment by soaking the hydrogel in solution containing drug. In vitro flux study using hairless mouse skin was performed at $36.5^{\circ}C$ using side-by-side diffusion cell, and the drug was analysed using HPLC/UV system. The result showed that, compared to passive flux, the total amount of drug transported increased about 18 folds by the application of $0.4\;mA/cm^2$ cathodal current. Anodal delivery with same current density also increased the total amount of drug transported about 13 folds. It seemed that the increase in flux was due to the electrorepulsion and the increase in passive permeability of the skin by the current application. Flux increased as current density, the duration of current application and loading amount (swelling duration) increased. As the cross linking density of the hydrogel increased, flux clearly decreased. The effect of hydrophilic enhancers (urea, N-methyl pyrrolidone, Tween 20) and some hydrophobic enhancers (propylene glycol monolaurate and isopropyl myristate) was minimal. However, about 3 folds increase in flux was observed when 5% oleic acid was used. Overall, these results provide some useful information on the design of an optimized iontophoretic delivery system of ketoprofen.

Seawater-driven forward osmosis for direct treatment of municipal wastewater

  • Sun, Yan;Bai, Yang;Tian, Jiayu;Gao, Shanshan;Zhao, Zhiwei;Cui, Fuyi
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.449-462
    • /
    • 2017
  • Direct treatment of municipal wastewater by forward osmosis (FO) process was evaluated in terms of water flux decline, reverse salt diffusion, pollutants rejection and concentration efficiency by using synthetic seawater as the draw solution. It was found that when operating in PRO mode (active layer facing the draw solution), although the FO membrane exhibited higher osmotic water flux, more severe flux decline and reverse salt diffusion was also observed due to the more severe fouling of pollutants in the membrane support layer and accompanied fouling enhanced concentration polarization. In addition, although the water flux decline was shown to be lower for the FO mode (active layer facing the feed solution), irreversible membrane fouling was identified in both PRO and FO modes as the water flux cannot be restored to the initial value by physical flushing, highlighting the necessity of chemical cleaning in long-term operation. During the 7 cycles of filtration conducted in the experiments, the FO membrane exhibited considerably high rejection for TOC, COD, TP and $NH_4{^+}-N$ present in the wastewater. By optimizing the volume ratio of seawater draw solution/wastewater feed solution, a concentration factor of 3.1 and 3.7 was obtained for the FO and PRO modes, respectively. The results demonstrated the validity of the FO process for direct treatment of municipal wastewater by using seawater as the draw solution, while facilitating the subsequent utilization of concentrated wastewater for bioenergy production, which may have special implications for the coastline areas.

Effect of Support Membrane Property on Performance of Forward Osmosis Membrane (지지체 특성이 정삼투막 성능에 미치는 영향)

  • Jeong, Bo-Reum;Kim, Jong-Hak;Kim, Beom-Sik;Park, Yoo-In;Song, Du-Hyun;Kim, In-Chul
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.235-240
    • /
    • 2010
  • The aim of this paper is to evaluate and compare the performances of forward osmosis (FO) membranes using different materials. The FO membranes were synthesized using interfacial polymerization method on hydrophobic polysulfone (PSf) and relatively hydrophilic polyethersulfone (PES) supports. The FO performance such as flux and back diffusion was measured. The resulting fluxes of PSf and PES FO membranes were $4.3\;L/m^2hr$ and $17.8\;L/m^2hr$, respectively. The flux of the PES FO membrane was higher than that of the PSf FO membrane. The results indicated that hydrophillictity of the support membrane is important for increasing flux in FO process. Moreover, with decreasing the support layer thickness, flux increased considerably.

Percutaneous Absorption and Model Membrane Variations of Melatonin in Aqueous-based Propylene Glycol and 2-Hydroxypropyl-$\beta$-cyclodextrin Vehicles

  • Lee, Beom-Jin;Cui, Jing-Hao;Keith A. Parrott;James W.Ayres;Robert L.Sack
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.503-507
    • /
    • 1998
  • Percutaneous absorption and model membrane variations of melationin (MT) in aqueous-based propylene glycol and $2-hydroxypropyl-{\beta}-cyclodextrin $vehicles were investigatted. the excised hairless mouse skin (HMS) and two synthetic ethylene vinyl acetate (EVA) and microporous polyethylene (MPE) were selected as a model membrane. the solubility of MT was determined by phase equilibrium study. the vertical $Franz{\circledR}$ type cell was used for diffusion study. The concentration of MT was determined using reverse phse HPLC system. The MT solubility was the highest in a mixture of PG and $2-HP{\beta}CD$. The percutaneous absorption of MT through excised HMS increased as the solubility increased. However, the permeability coefficient decreased and then slightly increased in mixture of PG and $2-HP{\beta}CD$. On the other hand, both flux and permeability coefficient through EVA membrane decreased as the solubility increased. No MT was detected over 12 h after starting diffusion through MPE membrane. The flux of MT was dependent on the type of membrane selected. Flux of MT was greatest in excised HMS followed by EBA and MPE membrane. Flux of MT through EVA membrane was 5-20 times lower when compared to excised HMS. Interestingly, volumes of donor phase when MPE membrane was used, significantly increased during the study period. the HMS might be applicable to expect plasma concentration of MT in human subjects based on flux and pharmacokinetic parameters as studied previously. the current studies may be applied to deliver MT transdermally using aqueous-based vehicles and to fabricate MT dosage forms.

  • PDF

Study on self-diffusion transport phenomena during mercurous bromide (Hg2Br2) vapor processes (브로민화수은(I)(Hg2Br2) 증착공정에서 자체확산 연구)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.48-54
    • /
    • 2024
  • During the Hg2Br2 physical vapor transport process with self-diffusion, it is concluded that for 10-3g0≤ g ≤ 1g0 the thermal buoyancy driven convection is dominant in the vapor phase; at the gravitational level of g = 10-4g0, the transition region from the convection to diffusion occurs; for 10-6g0 ≤ g ≤ 10-5g0, the diffusion mode is predominant. The total molar flux of Hg2Br2 decays exponentially with the decreasing of one tenth of gravitational magnitude. For 10℃ ≤ ΔT ≤ 50℃, the total molar flux increases linearly and directly with the temperature difference between the source and crystal regions.

Analysis of Film Growth in InGaN/GaN Quantum Wells Selective Area Metalorganic Vapor Phase Epitaxy including Surface Diffusion (InGaN/GaN 양자우물의 SA-MOVPE에서 표면확산을 고려한 박막성장 해석)

  • Im, Ik-Tae;Youn, Suk-Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.29-33
    • /
    • 2011
  • Film growth rate and composition variation are numerically analyzed during the selective area growth of InGaN on the GaN triangular stripe microfacet in this study. Both the vapor phase diffusion and the surface diffusion are considered to determine the In composition on the InGaN surface. To obtain the In composition on the surface, flux of In atoms due to the surface diffusion is added to the concentration determined from the Laplace equation which is governing the gas phase diffusion. The solution model is validated by comparing the growth rates from the analyses to the experimental results of GaN and InN films. The In composition and resulting wave length are increased when the surface diffusion is considered. The In content is also increased according to the increasing mask width. The effect of mask width to the In content and wave length is increasing in the case of a small open region.

An Experimental Study on the Flame Appearance and Heat Transfer Characteristics of Acoustically Excited Impinging Inverse Diffusion Flames (음향 가진된 충돌 역 확산화염의 화염형상과 열전달 특성에 관한 실험적 연구)

  • Kang, Ki-Joong;Lee, Kee-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3647-3653
    • /
    • 2010
  • An experimental investigation of the flame appearance and heat transfer characteristics in both unexcited and excited impinging inverse diffusion flames with a loud speaker has been performed. The flame is found to become broader and shorter (in length) with acoustic excitation. The heat flux at the stagnation point is increased with the acoustic excitation. The acoustic excitation is more effective in lean conditions than in rich conditions. The reasons for these behaviors are that acoustic excitation improves the entrainment of surrounding air into the jet. From this study, it is found that the maximum increase of 57% in the total heat flux is obtained at the stagnation point of $\Phi$=0.8. Therefore, it is ascertained that the excitation combustion can be adopted with effective instruments as a method for improving heat transfer in impinging jet flames.

The Effects of $CO_2$ on Heat Transfer from Hydrogen Oxygen-enriched Flame (이산화탄소가 수소 산소부화 화염의 열전달에 미치는 영향)

  • Lee, Chang-Yeop;Choi, Joon-Won;Baek, Seung-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.261-266
    • /
    • 2003
  • An experimental study has been conducted to evaluate the effects of $CO_{2}$ on heat transfer from hydrogen oxygen-enriched flame. Experiments were performed on flames stabilized by a co-flow swirl burner, which mounted on top of the furnace. Five composition conditions of oxidizer were chosen with replacing $N_{2}$ with $CO_{2}$. In a steady state, total and radiative heat flux rates from the flame to the wall of furnace has been measured using heat flux meters. Temperature distribution in furnace also has been checked. Increasing $CO_{2}$ ratio in the oxidizer, the dominant heat transfer mode was changed into convection from radiation. Temperature in the furnace decreased but total heat flux increased.

  • PDF

Effects of CO2 on Heat Transfer from Oxygen-Enriched Hydrogen Flame (이산화탄소가 수소 산소부화 화염의 열전달에 미치는 영향)

  • Lee, Chang-Yeop;Choi, Joon-Won;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.937-944
    • /
    • 2004
  • An experimental study has been conducted to evaluate the effects of $CO_2$ on heat transfer from oxygen-enriched hydrogen flame. Experiments were performed on flames stabilized by a co-flow swirl burner, which was mounted on top of the furnace. Five different oxidizer compositions were prepared by replacing $N_2$ with $CO_2$. In a steady state, the total as well as radiative heat flux from the flame to the wall of furnace have been measured using a heat flux meter. Temperature distribution in furnace also has been measured and compared. By increasing $CO_2$ proportion in the oxidizer, the convection played a more significant role rather than radiation. Overall temperature in the furnace was seen to be decreased, while the total heat flux has increased.

A Study on Diffusion Approximations to Neutron Transport Boundary Conditions (중성자 수송경계조건의 확산근사에 대한 연구)

  • Noh, Taewan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • To correctly predict the neutron behavior based on diffusion calculations, it is necessary to adopt well-specified boundary conditions using suitable diffusion approximations to transport boundary conditions. Boundary conditions such as the zero net-current, the Marshak, the Mark, the zero scalar flux, and the Albedo condition have been used extensively in diffusion theory to approximate the reflective and vacuum conditions in transport theory. In this paper, we derive and analyze these conditions to prove their mathematical validity and to understand their physical implications, as well as their relationships with one another. To show the validity of these diffusion boundary conditions, we solve a sample problem. The results show that solutions of the diffusion equation with these well-formulated boundary conditions are very close to the solution of the transport equation with transport boundary conditions.