• 제목/요약/키워드: Diffuser/Nozzle

검색결과 124건 처리시간 0.029초

세라믹필터 집진장치의 역세정 시스템 설계를 위한 유동해석 (A Numerical Analysis of Pulse-Jet Cleaning Characteristics for Ceramic Filter System Design)

  • 정재화;서석빈;김시문;안달홍;김종진
    • 에너지공학
    • /
    • 제12권3호
    • /
    • pp.197-206
    • /
    • 2003
  • 본 연구에서는 다공성 세라믹 필터를 사용하는 집진장치에서 역세정 과정의 유동특성을 규명하고, 역세정 시스템 설계에 적용하기 위한 전산해석을 수행하였다. 주요 연구내용으로는 역세정 과정에서 중요한 변수인 노즐 직경, 노즐 팁의 위치, 다공성 세라믹 캔들필터의 투과율, 디퓨저 형상, 역세정 압력 등이 집진장치 내부에서의 속도분포, 압력분포 등 역세정 유동특성에 미치는 영향을 상세히 계산하여 역세정 시스템의 사양 설계에 활용할 수 있도록 하였다. 전산해석에는 상용의 FLUENT code를 사용하여 에너지 보존식을 포함한 압축성 축대칭 Navier-Stokes 방정식을 유한체적법 (Finite volume method)으로 해석하였다.

Effect of Air Velocity on Combustion Characteristics in Small-Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국연소학회지
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressure-swirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates ranging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2$, NOx, $SO_2$, flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity on $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Effect of Air Velocity on Combustion Characteristics Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2005년도 동계 학술대회 논문집
    • /
    • pp.76-82
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressureswirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates raging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2,\;NOx,\;S0_2,$ flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$ concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

화학공정 내 폐증기를 활용한 MVR 및 TVR 연구 (Investigation of MVR and TVR in Chemical Processes by Using Waste Steam)

  • 이창민;임정열;윤린
    • 설비공학논문집
    • /
    • 제27권4호
    • /
    • pp.201-206
    • /
    • 2015
  • The MVR was theoretically modeled by performing the polytropic process, and the polytropic coefficient was estimated by using the performance curve provided by the manufacturers. The TVR was investigated by applying the conservation equations to the movement of fluids inside the TVR. The size of the nozzle and diffuser was determined. Theoretical MVR and TVR modeling was verified by comparing the results of the model with the available design data. Besides, the effects of multi-staging of the MVR on power consumption, and the effects of suction and primary pressure on the sizing of TVR were investigated.

일체형 로켓 램제트의 비정상 반응유동장 해석 (Analysis on the Unsteady Reacting Flow-field in Integrated Rocket Ramjet)

  • 고현;박병훈;윤웅섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1494-1498
    • /
    • 2004
  • Transition sequence of rocket to ramjet was simulated numerically for a two-dimensional axisymmetric can-type ramjet engine. Multi-species preconditioned Navier-Stokes equations with $k-{\varepsilon}$ turbulence model and finite-rate chemistry model was employed. To calculate transition sequence, initial flow-field conditions for inlet diffuser with closed port-cover was computed first, and then that result was applied as initial conditions after port-cover opened. Terminal shock was developed as a result of increased pressure in a combustor due to combustion and ramjet operated at supercritical condition. For a smaller nozzle throat area, buzz instability was occurred. Strong pressure oscillations were observed as a result of forward and backward movement of terminal shock and those oscillations were not damped out.

  • PDF

고고도 모사용 소형시험장치 연구 (A Study of Simplified Test Rig for High Altitude Simulation)

  • 이지형;오종윤;박익수
    • 한국군사과학기술학회지
    • /
    • 제7권4호
    • /
    • pp.133-137
    • /
    • 2004
  • A simplified test rig to simulate high-altitude environments was designed by analyzing the AEDC (Arnolds Engineering Development Center) report regarding simulated altitude testing. The test rig consists of a vacuum chamber, a supersonic nozzle connected to a cold-gas supplier and a diffuser. The preliminary tests were conducted to validate the AEDC design concepts. The test results showed that sub-atmospheric pressure(1.0psia) environments were realized inside the vacuum chamber and the design concepts were confirmed.

자기변형 박막을 이용한 마이크로 펌프의 제작과 시험 (Fabrication and Test of a Micro Pump with a Magnetostrictive diaphragm)

  • 서지훈;정옥찬;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1017-1019
    • /
    • 1998
  • In this paper, the fabrication of a micropump with two giant magnetostrictive films of Sm-Fe and Tb-Fe is presented. The pump consist of one silicon wafer and one cover glass. The micropump consists of an actuator diaphragm, a paired nozzle and diffuser, and two through holes. The Structure of the micropump is fabricated by the chemical vapor deposition, the etching and the sputtering of the magnetostrictive films. The deflection of the actuator measured diaphragm is measured by using the laser vibrometer and the flow rate of the micro pump is observed by using a video microscope.

  • PDF

진공 이젝터-디퓨져 시스템내의 비정상 유동 과정에 관한 연구 (A Study on the Transient Flow Process in a Vacuum Ejector-Diffuser System)

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.299-302
    • /
    • 2009
  • The objective of the present study is to analyze the transient flow through theejector system with the help of a computational fluid dynamics (CFD) method. An attempt is made to investigate the interesting and conflicting phenomenon of the infinite entrainment into the primary stream without an infinite mass supply from the secondary chamber. The results obtained show that the one and only condition in which an infinite mass entrainment can be possible in such types of ejectors is the generation of a re-circulation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium of pressures at the onset of the recirculation zone. A steady flow in the ejector system is valid only after this point.

  • PDF

뇌척수액 션트를 위한 마이크로 전자력 펌프의 제작 (Fabrication of an Electromagnetic Micropump for Cerebrospinal Fluid Shunt)

  • Kim, Myung-Sik;Lee, Sang-Wook;Yang, Sang-Sik
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권12호
    • /
    • pp.591-596
    • /
    • 2002
  • This paper Presents the fabrication and test of a micropump that can be applied to an implantable cerebrospinal fluid shunt system for hydrocephalus patients The proposed micropump consists of a pair of corrugated parylene diaphragm chambers and a set of nozzle and diffuser. The electromagnetic force drives the diaphragms and pumps the fluid. The static or dynamic characteristics of the fabricated devices have been obtained experimentally. The site of the micropump is $14 \times 12 \times 8mm^3$. The flow rate increase by about $3 mell/h$ was observed in the operational pressure range the micropump.

가변형 음속/초음속 이젝터 시스템에 관한 실험적 연구 (An Experimental Study of the Variable Sonic/supersonic Ejector Systems)

  • 이준희;김희동
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.554-560
    • /
    • 2005
  • A new method to improve the efficiency of a hydrogen fuel cell system was introduced by using variable sonic/supersonic ejectors. To obtain the variable area ratio of the nozzle throat to ejector throat which controls the mass flow rate of the suction flow, the ejectors used a movable cylinder inserted into a conventional ejector-diffuser system. Experiments were carried out to understand the flow characteristics inside the variable ejector system. The secondary mass flow rates of subsonic and supersonic ejectors were examined by varying the operating pressure ratio and area ratio. The results showed that the variable sonic/supersonic ejectors could control the recirculation ratio by changing the throat area ratio, and also showed that the recirculation ratio increased fur the variable sonic ejector and decreased for the variable supersonic ejector, as the throat area ratio increases.