• Title/Summary/Keyword: Diffuser/Nozzle

Search Result 124, Processing Time 0.021 seconds

Develop Test Facility of High Altitude Environment for Kick Motor (Kick Motor용 고공환경 모사 시험 설비 개발)

  • Kim, Sang-Heon;V.A, Bershadskiy;Yu, Byung-Il;Kim, Yong-Wook;Oh, Seung-Hyub;Park, Jeong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.707-710
    • /
    • 2008
  • The method suggested in this thesis is the safe and economic method when testing rocket engine because ground test facility copies high altitude. We have decided to use the schematic of testing facility based on already known design method and test result, and we have decided the test condition for ground firing test of solid fuel. In addition the pressure of nozzle exit area is 0.1bar, we have designed the testing facility structure to test in this condition. Moreover, we have designed to reduce the accident probability.

  • PDF

Operation of PCR chip by micropump (마이크로펌프를 이용한 PCR Chip의 구동)

  • 최종필;반준호;장인배;김헌영;김병희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.463-467
    • /
    • 2004
  • This paper presents the fabrication possibility of the micro actuator which uses a micro-thermal bubble, generated b micro-heater under pulse heating. The valve-less micropump using the diffuser/nozzle is consists of the lower plate, he middle plate, the upper plate. The lower plate includes the channel and chamber are fabricated on high processability silicon wafer by the DRIE(Deep Reactive Ion Etching) process. The middle plate includes the chamber and diaphragm d the upper plate is the micro-heater. The Micropump is fabricated by bonding process of the three layer. This paper resented the possibility of the PCR chip operation by the fabricated micropump.

  • PDF

A prediction of the scavenging efficiency and the performance of a two-stoke SI engine with the different exhaust systems (배기관 형상에 따른 2행정기관의 소기효율 및 성능 예측)

  • Chung, J.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.130-135
    • /
    • 1995
  • In this paper, the numerical simulation of the method of characteristics for a two-stroke SI engine was carried out, and the scavenging efficiency and the performance of single engine with two types of exhaust system, that is, a pipe exhaust system and a tuned exhaust system, were predicted and compared. The conculusions are obtained as follows. (1) The method of characteristics of hometropic flow considering the friction and the variation of area is useful to predict the scavenging efficiency and the performance of the two-stroke engine. (2) The shape of exhaust system effects directly on the scavenging and the trapping efficiency. (3) A tuned exhaust system consisted of the diffuser and the convergent nozzle makes the plugging pulse and therefore enhances the scavenging and the trapping efficiency. (4) It may be possible to design the optimum exhaust system by using the plugging pulse.

  • PDF

Analytical Study of the Subsonic/Sonic Ejector Flows (아음속/음속 이젝터의 유동에 관한 해석적 연구)

  • 최보규;김희동;김덕줄
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.1-10
    • /
    • 2000
  • In order to predict the performance of subsonic/sonic ejector system and to provide fundamental data for a cost effective design, one dimensional gas dynamics theory was applied to the subsonic and sonic ejector systems with the second throat. In the current theoretical analyses, ejector throat area ratio, mass flow ratio and secondary stagnation pressure were derived as a function of the operating pressure ratio of the ejector, and the discharge coefficient of the primary nozzle and the loss coefficient of the diffuser were incorporated into the whole performance of the ejector system. The results of theoretical analysis can be applied to practical industrial use of subsonic and sonic gas ejector systems.

  • PDF

Study on the Design and Operation Characteristics of Ejector System (이젝터 시스템의 설계 및 작동 특성에 관한 연구)

  • NamKoung, Hyuck-Joon;Han, Poong-Gyoo;Kim, Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.627-630
    • /
    • 2009
  • Ejector system can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an configuration and operating conditions for an ejector in the condition of sonic and subsonic. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Numerical simulation was adopted for an optimal geometry design and satisfying the required performance. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

The Ejector Design and Test for 5kW MCFC System (5kW 용융탄산염 연료전지(MCFC) 이젝터 설계 및 시험)

  • Kim, Beom-Joo;Kim, Do-Hyeong;Lee, Jung-Hyun;Lee, Sung-Yoon;Kim, Jin-Yoel;Kang, Seung-Won;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • An ejector is a machine utilized for mixing fluid, maintaining a vacuum, and transporting fluid. The Ejector enhances system efficiency, are easily operated, have a mechnically simple structure, and do not require a power supply. Because of these advantages, the ejector has been applied to a variety of industrial fields such as refrigerators, power plants and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 5 kW Molten Carbonate Fuel Cell system at KEPRI(Korea Electric Power Research Institute). In this system, the ejector is placed at mixing point between the anode tail gas and the cathode tail gas or the fresh air. Commercial ejectors are not designed for the actual operating conditions for our fuel cell system. A new ejector was therefore designed for use beyond conventional operating limits. In this study, the entrainment ratio is measured according to the diametrical ratio of nozzle to throat in the designed ejector. This helps to define important criteria of ejectors for MCFC recycling.

The design of an ejector type microbubble generator for aeration tanks

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.307-311
    • /
    • 2019
  • The ejector type microbubble generator, which is the method to supply air to water by using cavitation in the nozzle, does not require any air supplier so it is an effective and economical. Also, the distribution of the size of bubbles is diverse. Especially, the size of bubbles is smaller than the bubbles from a conventional air diffuser and bigger than the bubbles from a pressurized dissolution type microbubble generator so it could be applied to the aeration tank for wastewater treatment. However, the performance of the ejector type microbubble generator was affected by hydraulic pressure and MLSS(Mixed Liquor Suspended Solid) concentration so many factors should be considered to apply the generator to aeration tank. Therefore, this study was performed to verify effects of hydraulic pressure and MLSS concentration on oxygen transfer of the ejector type microbubble generator. In the tests, the quantity of sucked air in the nozzle, dissolved oxygen(DO) concentration, oxygen uptake rate(OUR), oxygen transfer coefficient were measured and calculated by using experimental results. In case of the MLSS, the experiments were performed in the condition of MLSS concentration of 0, 2,000, 4,000, 8,000 mg/L. The hydraulic pressure was considered up to $2.0mH_2O$. In the results of experiments, oxygen transfer coefficient was decreased with the increase of MLSS concentration and hydraulic pressure due to the increased viscosity and density of wastewater and decreased air flow rate. Also, by using statistical analysis, when the ejector type microbubble generator was used to supply air to wasterwater, the model equation of DO concentration was suggested to predict DO concentration in wastewater.

A Numerical Study on the Performance Characteristics of a Piezoelectric Micropump for Different Inlet and Outlet Positions (${\cdot}$출구 위치 변화에 따른 압전 구동방식 마이크로 펌프의 성능특성에 관한 수치해석적 연구)

  • Kim Dong Hee;Jeong Jin;Kim Chang Nyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • This study has been conducted to investigate flow characteristics of a micropump with piezoelectric materials. In this study, the change of flow rates has been investigated for different positions of the inlet and outlet and for different distances between them. The FSI(Fluid Structure Interaction) method has been employed for numerical analysis of the piezoelectric diffuser/nozzle based micropump. It has been found that time averaged flow rate is greater in the case that distance between the inlet and outlet is longer. For the cases where the positions of the inlet are different with the position of the fixed outlet at the center, the flow rate is increased as the inlet is located farther from the center. This study may supply fundamental understandings for the design and analysis of the prototypes of piezoelectric micropumps.

Preliminary Design of High Altitude Test Facility for Kick Motor of KSLV-I Development (KSLV-I 킥모터용 고공환경모사 시험설비 구축을 위한 기본설계)

  • Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.180-187
    • /
    • 2007
  • Korea Aerospace Research Institute(KARI) is developing Korea Space Launch Vehicle(KSLV). KSLV-I is composed of liquid propulsion system for the first stage and apogee kick motor as the second stage. Kick motor has a high expansion ratio nozzle and its starting altitude is 300km high. To verify the performance of kick motor, high altitude test facility (HATF) to simulate its operating condition is necessary. This paper contains preliminary design for construction of HATF.

  • PDF

A Numerical Study on the Internal Flow Characteristics and Pumping Performance of a Piezoelectric-based Micropump with Electromagnetic Resistance (전자기 저항을 이용한 압전 구동방식 마이크로 펌프의 내부유동 특성과 펌핑성능에 대한 수치해석적 연구)

  • An, Yong-Jun;Oh, Se-Hong;Kim, Chang-Nyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.84-92
    • /
    • 2010
  • In this study a numerical analysis has been conducted for the flow characteristics and pumping performance of a piezoelectric-based micropump with electromagnetic resistance exerted on electrically conducting fluid. Here, electromagnetic resistance is alternately applied at the inlet and outlet with alternately applied magnetic fields in association with the reciprocal membrane motion of the piezoelectric-based micropump. A model of Prescribed Deformation is used for the description of the membrane motion. The internal flow characteristics and pumping performance are investigated with the variation of magnetic flux density, tube size, displacement of membrane and the frequency of the membrane. It turns out that the current micropump has a wide range of pumping flow rate compared with diffuser-nozzle based micropumps.