• 제목/요약/키워드: Diffuse reflectance

검색결과 128건 처리시간 0.029초

Photocatalytic degradation of organic compounds by 2-ethylimidazole-treated titania under visible light illumination

  • Seo, Jiwon;Jeong, Junyoung;Lee, Changha
    • Membrane and Water Treatment
    • /
    • 제10권3호
    • /
    • pp.223-229
    • /
    • 2019
  • Titania modified by 2-ethylimidazole (2-EI) (denoted as $2-EI-TiO_2$) demonstrated visible light photocatalytic activity for the degradation of organic compounds. $2-EI-TiO_2$ was a bright brown powder that exhibited similar crystallinity and morphology with the control $TiO_2$. A diffuse reflectance spectrum indicated that $2-EI-TiO_2$ absorbs visible light of all wavelengths. X-ray photoelectron spectroscopy (XPS) confirmed the cationic state of nitrogen species (e.g. Ti-O-N) on the surface of $2-EI-TiO_2$. Visible light-illuminated $2-EI-TiO_2$ degraded $10{\mu}M$ 4-chlorophenol (4-CP) by approximately 85% in 4 h. The photochemical activity of $2-EI-TiO_2$ was selective in targeting the organic compound. The repeated use of $2-EI-TiO_2$ decreased the photocatalytic activity for the 4-CP degradation. Experiments using radical scavengers and oxidant probes revealed that the oxidation by photogenerated holes is responsible for the degradation of organic compounds by illuminated $2-EI-TiO_2$ and the role of $^{\bullet}OH$ is negligible.

Size and Crystal Structure Dependence of Photochromism of Nanocrystalline WO3 and MoO3 Prepared by Acid-Precipitation Method

  • Jun Young, Kwak;Young Hee, Jung;Yeong Il, Kim
    • 대한화학회지
    • /
    • 제67권1호
    • /
    • pp.33-41
    • /
    • 2023
  • Nanocrystallne WO3 and MoO3 with several different sizes and crystal structures were prepared by simple acid precipitation and subsequent heat treatment. The photochromic (PC) properties of these samples were comparatively investigated in powder state by monitoring diffuse reflectance spectral changes after bandgap irradiation. The PC effect of hexagonal WO3 and monoclinic WO3 strongly depended upon crystallite size rather than crystal structure. The smaller the crystallite size, the better the PC effect. However, orthorhombic WO·H2O and MoO3 having hexagonal and orthorhombic structures did not follow this trend. One consistent result for all WO3 and MoO3 samples is that the heat treatment in air, which changes crystallinity, whether it changes the crystal structure or only the crystallite size, reduces the PC effect. Since the thermal treatment reduces the surface oxygen defect sites, we believe that the PC effect of WO3 and MoO3 depends critically on the surface oxygen defect sites that serve as deep trap sites for photogenerated electrons and oxygen radical holes. We also found that the proton insertion claimed by double charge injection model is not critical for the PC effect.

이산화 티타늄/마이카 복합 재료의 적외선 광반사 특성 (Synthesis and Infrared Light Reflecting Characteristics of TiO2/Mica Hybrid Composites)

  • 길현석;이석우
    • 공업화학
    • /
    • 제27권1호
    • /
    • pp.16-20
    • /
    • 2016
  • 본 연구에서는 $TiO_2$/마이카 혼성 복합 재료의 합성과 적외선 반사 특성에 관한 연구를 수행하였다. 마이카 입자의 존재 하에 아세트산 수용액에서 titanium isopropoxide의 가수 분해 반응과 축합 반응에 의해 $TiO_2$/마이카 복합 재료를 합성하였다. $TiO_2$/마이카 복합 재료의 열처리($600{\sim}1000^{\circ}C$, 1~3 h)에 의해 마이카 표면에 형성된 비결정성 상의 $TiO_2$은 anatase 상을 거쳐 결정성 rutile 상으로 전환되었으며 열처리 조건에 의해 결정의 크기가 제어되었다. FE-SEM 분석, ED-XRF 분석, XRPD 분석을 통하여 마이카와 $TiO_2$/마이카 복합 재료의 물리화학적 특성을 규명하였다. 확산 반사-근적외선 분광 분석을 통하여 측정한 $TiO_2$/마이카 혼성 복합 재료의 근적외선 범위(780~2,500 nm)에서의 일사 반사율은 88.6%로, 순수한 소성 마이카의 86.6%보다 다소 높았다. 따라서 $TiO_2$/마이카 혼성 복합 재료는 높은 광반사율을 나타내는 차열 도료의 안료로 사용할 수 있을 것이다.

Effects of variety, region and season on near infrared reflectance spectroscopic analysis of quality parameters in red wine grapes

  • Esler, Michael B.;Gishen, Mark;Francis, I.Leigh;Dambergs, Robert G.;Kambouris, Ambrosias;Cynkar, Wies U.;Boehm, David R.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1523-1523
    • /
    • 2001
  • The wine industry requires practical methods for objectively measuring the composition of both red wine grapes on the vine to determine optimal harvest time; and of freshly harvested grapes for efficient allocation to vinery process streams for particular red wine products, and to determine payment of contract grapegrowers. To be practical for industry application these methods must be rapid, inexpensive and accurate. In most cases this restricts the analyses available to measurement of TSS (total soluble solids, predominantly sugars) by refractometry and pH by electropotentiometry. These two parameters, however, do not provide a comprehensive compositional characterization for the purpose of winemaking. The concentration of anthocyanin pigment in red wine grapes is an accepted indicator of potential wine quality and price. However, routine analysis for total anthocyanins is not considered as a practical option by the wider wine industry because of the high cost and slow turnaround time of this multi-step wet chemical laboratory analysis. Recent work by this ${group}^{l,2}$ has established the capability of near infrared (NIR) spectroscopy to provide rapid, accurate and simultaneous measurement of total anthocyanins, TSS and pH in red wine grapes. The analyses may be carried out equally well using either research grade scanning spectrometers or much simpler reduced spectral range portable diode-array based instrumentation. We have recently expanded on this work by collecting thousands of red wine grape samples in Australia. The sample set spans two vintages (1999 and 2000), five distinct geographical winegrowing regions and three main red wine grape varieties used in Australia (Cabernet Sauvignon, Shiraz and Merlot). Homogenized grape samples were scanned in diffuse reflectance mode on a FOSE NIR Systems6500 spectrometer and subject to laboratory analysis by the traditional methods for total anthocyanins, TSS and pH. We report here an analysis of the correlations between the NIR spectra and the laboratory data using standard chemometric algorithms within The Unscrambler software package. In particular, various subsets of the total data set are considered in turn to elucidate the effects of vintage, geographical area and grape variety on the measurement of grape composition by NIR spectroscopy. The relative ability of discrete calibrations to predict within and across these differences is considered. The results are then used to propose an optimal calibration strategy for red wine grape analysis.

  • PDF

표면텍스처링된 이중구조 Ag/Al:Si 후면반사막의 광산란 특성 (Light Scattering Properties of Highly Textured Ag/Al:Si Bilayer Back Reflectors)

  • 장은석;백상훈;장병열;박상현;윤경훈;이영우;조준식
    • 한국재료학회지
    • /
    • 제21권10호
    • /
    • pp.573-579
    • /
    • 2011
  • Highly textured Ag, Al and Al:Si back reflectors for flexible n-i-p silicon thin-film solar cells were prepared on 100-${\mu}m$-thick stainless steel substrates by DC magnetron sputtering and the influence of their surface textures on the light-scattering properties were investigated. The surface texture of the metal back reflectors was influenced by the increased grain size and by the bimodal distribution that arose due to the abnormal grain growth at elevated deposition temperatures. This can be explained by the structure zone model (SZM). With an increase in the deposition temperatures from room temperature to $500^{\circ}C$, the surface roughness of the Al:Si films increased from 11 nm to 95 nm, whereas that of the pure Ag films increased from 6 nm to 47 nm at the same deposition temperature. Although Al:Si back reflectors with larger surface feature dimensions than pure Ag can be fabricated at lower deposition temperatures due to the lower melting point and the Si impurity drag effect, they show poor total and diffuse reflectance, resulting from the low reflectivity and reflection loss on the textured surface. For a further improvement of the light-trapping efficiency in solar cells, a new type of back reflector consisting of Ag/Al:Si bilayer is suggested. The surface morphology and reflectance of this reflector are closely dependent on the Al:Si bottom layer and the Ag top layer. The relationship between the surface topography and the light-scattering properties of the bilayer back reflectors is also reported in this paper.

Photocatalytic Activity of Hierarchical N doped TiO2 Nanostructures

  • Naik, Brundabana;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.669-669
    • /
    • 2013
  • Hierarchical N doped TiO2 nanostructured catalyst with micro, meso and macro porosity have been synthesized by a facile self-formation route using ammonia and titanium isopropoxide precursor. The samples were calcined in different calcination temperature ranging from $300^{\circ}C$ to $800^{\circ}C$ at slow heating rate ($5^{\circ}C$/min) and designated as NHPT-300 to NHPT-800. $TiO_2$ nanostructured catalyst have been characterized by physico-chemical and spectroscopy methods to explore the structural, electronic and optical properties. UV-Vis diffuse reflectance spectra confirmed the red shift and band gap narrowing due to the doping of N species in TiO2 nanoporous catalyst. Hierarchical macro porosity with fibrous channel patterning was observed (confirmed from FESEM) and well preserved even after calcination at $800^{\circ}C$, indicating the thermal stability. BET results showed that micro and mesoporosity was lost after $500^{\circ}C$ calcination. The photocatalytic activity has been evaluated for methanol oxidation to formaldehyde in visible light. The enhanced photocatalytic activity is attributed to combined synergetic effect of N doping for visible light absorption, micro and mesoporosity for increase of effective surface area and light harvestation, and hierarchical macroporous fibrous structure for multiple reflection and effective charge transfer.

  • PDF

가시광 활성을 갖는 광촉매용 $TiO_2-_xN_x$ 나노입자의 제조 및 특성 (Preparation and Characteristics of Visible-Light-Active $TiO_2-_xN_x$ Nanoparticles for Photocatalytic Activities)

  • 윤태관;배재영
    • 대한환경공학회지
    • /
    • 제31권11호
    • /
    • pp.1019-1024
    • /
    • 2009
  • 가시광 활성을 갖는 anatase 결정구조의 $TiO_2-_xN_x$ 나노입자를 암모니아 수용액에서 $TiCl_4$ 가수분해에 의해 제조하였다. 제조한 시료의 특성은 XRD, TEM, $N_2$-sorption 및 DRS로 분석하였다. 질소를 $TiO_2$에 도핑함으로써 광흡수 영역이 순수한 TiO2에 해당하는 390 nm에서 가시광 영역인 530 nm까지 이동하였다. DRS 분석결과로부터 $TiO_2-_xN_x$의 밴드갭이 감소하는 것을 유추할 수 있었다. 광촉매 활성은 가시광 조사하에서 congo red 분해로부터 평가하였다. 질소의 도핑 농도가 적절한 광촉매가 광촉매 활성이 가장 높게 나타났다. 이러한 결과로부터 질소 도핑이 광촉매 활성의 향상에 중요한 역할을 함을 확인할 수 있었다.

Electron Spin Resonance Study of Manganese Ion Species Incorporated into Novel Aluminosilicate Nanospheres with Solid Core/Mesoporous Shell Structure

  • Back, Gern-Ho;Kim, Ki-Yub;Kim, Yun-Kyung;Yu, Jong-Sung
    • 한국자기공명학회논문지
    • /
    • 제14권2호
    • /
    • pp.55-75
    • /
    • 2010
  • An ion-exchanged reaction of $MnCl_2$ with Al-incorporated solid core/mesoporous shell silica (AlSCMS) followed by calcinations generated manganese species, where average oxidation state of manganese ion is 3+, in the mesoporous materials. Dehydration results in the formation of $Mn^{2+}$ ion species, which can be characterized by electron spin resonance (ESR). The chemical environments of the manganese centers in Mn-AlSCMS were investigated by diffuse reflectance, UV-VIS and ESR spectroscopic methods. Upon drying at 323 K, part of manganese is oxidized to higher oxidation state ($Mn^{3+}$ and $Mn^{4+}$) and further increase in (average) oxidation state takes place upon calcinations at 823 K. It was found that the manganese species on the wall of the Mn-AlSCMS were transformed to tetrahedral $Mn^{3+}$ or $Mn^{4+}$ and further changed to square pyramid by additional coordination to water molecules upon hydration. The oxidized $Mn^{3+}$ or $Mn^{4+}$ species on the surfaces were reversibly reduced to $Mn^{2+}$ or $Mn^{3+}$ species or lower valances by thermal process. Mn(II) species I with a well resolved sextet was observed in calcined, hydrated Mn-AlSCMS, while Mn (II) species II with g = 5.1 and 3.2 observed in dehydrated Mn-AlSCMS. Both species I and II are considered to be non-framework Mn(II).

A Deep Investigation of the Thermal Decomposition Process of Supported Silver Catalysts

  • Jiang, Jun;Xu, Tianhao;Li, Yaping;Lei, Xiaodong;Zhang, Hui;Evans, D.G.;Sun, Xiaoming;Duan, Xue
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1832-1836
    • /
    • 2014
  • A deep understanding of the metallic silver catalysts formation process on oxide support and the formation mechanism is of great scientific and practical meaning for exploring better catalyst preparing procedures. Herein the thermal decomposition process of supported silver catalyst with silver oxalate as the silver precursor in the presence of ethylenediamine and ethanolamine is carefully investigated by employing a variety of characterization techniques including thermal analysis, in situ diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, and X-ray diffraction. The formation mechanism of supported silver particles was revealed. Results showed that formation of metallic silver begins at about $100^{\circ}C$ and activation process is essentially complete below $145^{\circ}C$. Formation of silver was accompanied by decomposition of oxalate group and removal of organic amines. Catalytic performance tests using the epoxidation of ethylene as a probe reaction showed that rapid activation (for 5 minutes) at a relatively low temperature ($170^{\circ}C$) afforded materials with optimum catalytic performance, since higher activation temperatures and/or longer activation times resulted in sintering of the silver particles.

Purification of BTEX at Indoor Air Levels Using Carbon and Nitrogen Co-Doped Titania under Different Conditions

  • Jo, Wan-Kuen;Kang, Hyun-Jung
    • 한국환경과학회지
    • /
    • 제21권11호
    • /
    • pp.1321-1331
    • /
    • 2012
  • To date, carbon and nitrogen co-doped photocatalysts (CN-$TiO_2$) for environmental application focused mainly on the aqueous phase to investigate the decomposition of water pollutants. Accordingly, the present study explored the photocatalytic performance of CN-$TiO_2$ photocatalysts for the purification of indoor-level gas-phase aromatic species under different operational conditions. The characteristics of prepared photocatalysts were investigated using X-ray diffraction, scanning emission microscope, diffuse reflectance UV-VIS-NIR analysis, and Fourier transform infrared (FTIR) analysis. In most cases, the decomposition efficiency for the target compounds exhibited a decreasing trend as input concentration (IC) increased. Specifically, the average decomposition efficiencies for benzene, toluene, ethyl benzene, and xylene (BTEX) over a 3-h process decreased from 29% to close to zero, 80 to 5%, 95 to 19%, and 99 to 32%, respectively, as the IC increased from 0.1 to 2.0 ppm. The decomposition efficiencies obtained from the CN-$TiO_2$ photocatalytic system were higher than those of the $TiO_2$ system. As relative humidity (RH) increased from 20 to 95%, the decomposition efficiencies for BTEX decreased from 39 to 5%, 97 to 59%, 100 to 87%, and 100 to 92%, respectively. In addition, as the stream flow rates (SFRs) decreased from 3.0 to 1.0 L $min^{-1}$, the average efficiencies for BTEX increased from 0 to 58%, 63 to 100%, 69 to 100%, and 68 to 100%, respectively. Taken together, these findings suggest that three (IC, RH, and SFR) should be considered for better BTEX decomposition efficiencies when applying CN-$TiO_2$ photocatalytic technology to purification of indoor air BTEX.