• Title/Summary/Keyword: Diffraction

Search Result 8,705, Processing Time 0.045 seconds

Growth and Photocurrent Properties of CdIn2S4/GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy 법에 의한 CdIn2S4 단결정 박막의 성장과 광전류 특성)

  • Lee, Sang-Youl;Hong, Kwang-Joon;Park, Jin-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.309-318
    • /
    • 2002
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdIn_2S_4$ single crystal thin films measured with Hall effect by van der Pauw method are $9.01{\times}10^{16}\;cm^{-3}$ and $219\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7116\;eV-(7.74{\times}10^{-4}\;eV)T^2/(T+434)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2S_4$ have been estimated to be 0.1291 eV and 0.0248 eV, respectively, by means of the photocurrent spectra and the Hopfield quasi cubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}5$ states of the valence band of the $AgInS_2$/GaAs epilayer. The three photocurrent peaks observed at 10K areascribed to the $A_1$-, $B_1$-, and C1-exciton peaks for n = 1.

Growth and optical properties for MgGa2Se4 single crystal thin film by hot wall epitaxy (Hot wall epitaxy법에 의한 MgGa2Se4 단결정 박막 성장과 광학적 특성)

  • Moon, Jong-Dae;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.99-104
    • /
    • 2011
  • A stoichiometric mixture of evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. The crystal structure of these compounds has a rhombohedral structure with lattice constants $a_0=3.953\;{\AA}$, $c_0=38.890\;{\AA}$. To obtain the single crystal thin films, $MgGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of $MgGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method were $6.21{\times}10^{18}\;cm^{-3}$ and 248 $cm^2/v{\cdot}s$ at 293 K, respectively. The optical absorption of $MgGa_2Se_4$ single crystal thin films was investigated in the temperature range from 10 K to 293 K. The temperature dependence of the optical energy gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's equation, $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=2.34\;eV$, ${\alpha}=8.81{\times}10^{-4}\;eV/K$ and ${\beta}=251\;K$, respectively.

A comparative study of electroplating and electroless plating for diameter increase of orthodontic wire (교정용 선재의 직경 증가를 위한 전기도금법과 무전해도금법의 비교연구)

  • Kim, Jae-Nam;Cho, Jin-Hyoung;Sung, Young-Eun;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.36 no.2 s.115
    • /
    • pp.145-152
    • /
    • 2006
  • The purpose of this study was to evaluate electroless plating as a method of increasing the diameter of an orthodontic wire in comparison with eletroplating. After pretreatment plating of the 0.016 inch stainless steel orthodontic wire, electroless plating was performed at $90^{\circ}C$ until the diameter of the wire was increased to 0.018 inch. During the process of electroless plating, the diameter of the wire was measured every 5 minutes to examine the increasing ratio of the wire's diameter per time unit. And to examine the uniformity, the diameter at 3 points on the electroless-plated orthodontic wire was measured. An X-ray diffraction test for analyzing the nature of the plated metal and a 3-point bending test for analyzing the physical property were performed. The electroless-plated wire group showed a increased tendency for stiffness, yield strength, and ultimate strength than the electroplated wire group. And there was a statistically significant difference between the two groups for stiffness and ultimate strength. In the electroless-plated wire group, the increasing ratio of the diameter was $0.00461{\pm}0.00003mm/5min$ (0.00092 mm/min). In the electroplated wire group, it was $0.00821{\pm}0.00015mm/min$. The results of the uniformity test showed a tendency for uniformity in both the plating methods. The results of this study suggest that electroless plating of the wire is closer to the ready-made wire than electroplating wire in terms of the physical property. However, the length of plating time needs further consideration for the clinical application of electroless plating.

Mineral Composition and Grain Size Distribution of Fault Rock from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 광물 조성과 입도 분포 특징)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Chang, Tae Woo;Jang, Yun Deuk
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.487-502
    • /
    • 2012
  • This paper is focused on mineral compositions, microstructures and distributional characters of remained grains in the fault rocks collected from a fault developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using X-ray diffraction (XRD), optical microscope, laser grain size analysis and fractal dimension analysis methods. The exposed fault core zone is about 1.5 meter thick. On the average, the breccia zone is 1.2 meter and the gouge zone is 20cm thick, respectively. XRD results show that the breccia zone consists predominantly of rock-forming minerals including quartz and feldspar, but the gouge zone consists of abundant clay minerals such as chlorite, illite and kaolinite. Mineral vein, pyrite and altered minerals commonly observed in the fault rock support evidence of fault activity associated with hydrothermal alteration. Fractal dimensions based on box counting, image analysis and laser particle analysis suggest that mineral grains in the fault rock underwent fracturing process as well as abrasion that gave rise to diminution of grains during the fault activity. Fractal dimensions(D-values) calculated by three methods gradually increase from the breccia zone to the gouge zone which has commonly high D-values. There are no noticeable changes in D-values in the gouge zone with trend being constant. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. Mineral compositions in the fault zone and peculiar trends in grain distribution indicate that multiple fault activity had a considerable influence on the evolution of fault zones, together with hydrothermal alteration. Meanwhile, fractal dimension values(D) in the fault rock should be used with caution because there is possibility that different values are unexpectedly obtained depending on the measurement methods available even in the same sample.

Evaluation of Mn Removal Efficiency from the Mine Drainage in the Presence of Fe Using Slag Complex Reactors (제강슬래그 복합매질체를 이용한 철 유입에 따른 광산배수내 망간 제거효율 평가)

  • Kim, Dong-Kwan;Ji, Won Hyun;Kim, Duk-Min;Park, Hyun-Sung;Oh, Youn Soo
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.401-407
    • /
    • 2018
  • For the treatment of heavy metals in the mine drainage from the closed mine area, various methods such as passive, active and semi-active treatments are considered. Among contaminated elements in the mine drainage, Mn is one of the difficult elements for the treatment because it needs high pH over 9.0 for its concentration to be reduced. In this study, the efficiency of various slag complex reactors (slag (S), slag+limestone (SL) and slag+Mn coated gravel (SG)) on Mn removal in the presence of Fe, which is a competitive element with Mn, was evaluated to investigate effective methods for the treatment of Mn in mine drainage. As a result of experiments on Mn removal without Fe during 358 days, using influent with $30{\sim}50Mn{\cdot}mg/L$ and pH 6.7 on the average, S reactor showed continuously high Mn removal efficiency with the average of 99.9% with pH 8.9~11.4. Using the same reactors, Mn removal experiments with Fe during 237 days were conducted with the influent with $40{\sim}60Mn{\cdot}mg/L$. The pH range of effluent reached to 6.1~10.0, which is slightly lower than that of effluent without Fe. S reactor showed the highest range of pH with 7.1~9.9, followed by S+L and S+G reactor. However, the efficiency of Mn removal showed S+L>S>S+G with the range of 94~100%, 68~100% and 68~100%, respectively in spite of relatively low pH range. S+L reactor showed the most resistance on Fe input, which means other mechanisms such as $MnCO_3$ formation by the carbonate prouced from the limestone or autocatalysis reaction of Mn contributed to Mn removal rather than pH related mechanisms. The evidence of reactions between carbonates and Mn, rhodochrosite ($MnCO_3$), was found from the X-ray diffraction analysis of precipitates sample from S+L reactor. From this study, the most effective reactors on Mn removal in the presence of Fe was S+L reactor. The results are expected to be applied for the Mn containing mine water treatment in the presence of Fe within the relatively low range of pH.

Physicochemical Properties of Cross-linked Waxy Rice Starches and Its Application to Yukwa (가교화 찹쌀전분의 물리화학적 성질 및 유과제조 특성)

  • Yu, Chul;Choi, Hyun-Wook;Kim, Chong-Tai;Ahn, Soon-Cheol;Choi, Sung-Won;Kim, Byung-Yong;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.534-540
    • /
    • 2007
  • In this study, waxy rice starch was chemically modified using phosphorous oxychloride ($POCl_3$, 0.002-0.008%). Then the physicochemical properties of resulting cross-linked waxy rice starches were investigated in order to reduce the steeping time of Yukwa (a Korean oil-puffed rice snack) processing. The swelling powers of the cross-linked waxy rice starch samples were higher than the native waxy rice starch at temperatures above $60^{\circ}C$, and their increases were proportional to the $POCl_3$, concentration. The solubility of the cross-linked waxy rice starch was lower (1.6-3.4%) than the native waxy rice starch (2.7-6.1%). However, the moisture sorption isotherm of the cross-linked waxy rice starch was not significantly different from the native waxy rice starch. The rapid visco analyze. (RVA) pasting temperatures $(65.4-67^{\circ}C)$ of the cross-linked waxy rice starch were lower than those of the native starch $(67^{\circ}C)$. The RVA peak viscosities (287-337 RVU) of the cross-linked waxy rice starch were higher than that of native starch (179 rapid visco units (RVU)), and increased with increasing $POCl_3$ concentration. For the differential scornning calorimeter thermal characteristics, although Tc shifted toward higher temperatures with cross-linking, the To, Tp, and amylopectiin melting enthalpy of the cross-linked waxy rice starch showed no differences compared to the native waxy rice starch. The X-ray diffraction patterns of both the native and cross-linked waxy rice starches showed typical A-type crystal patterns, suggesting that cross-linking mainly occurs in the amorphous regions of starch granules. Therefore, the cross-linking reaction did not change the crystalline region, but altered the amorphous region of the waxy rice starch molecules, resulting in changes of solubility and RVA pasting properties in the cross-linked waxy rice starch. In summary, since cross-linked waxy rice starch has a high puffing efficiency and no browning reaction, it may be applicable for Yukwa processing without a long steeping process.

Mineralogical Study on the Clay Formation and Heavy Metal Speciation in the Acidified Soil Profile of the Onsan Industrial Area (온산공업지역 산성 토양 프로화일 내에서의 점토광물의 생성과 중금속 이온의 거동에 관한 광물학적 연구)

  • 이상수;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The present study is focused on the granite weathering and soil formation, and the heavy metal contamination in soils in the Onsan industrial area. For profile study, soil sampling was conducted on each depth and experimental analyses have been conducted on those samples. X-ray diffraction analyses show that clay minerals consist mainly of kaolin minerals, vermiculite, and minor illite. Most of kaolin minerals in the lower kiwi of the profile consist of halloysite as confirmed by formamide intercalation, but the content of halloysite decreases gradually toward the surface since it has been transformed to kaolinite in the upper part of the profile. Thermal treatment by heating at $110^{\circ}C,\;300^{\circ}C,\;and\;550^{\circ}C$ shows a diffuse and broad peak the between 10 and $14\;{\AA}$ region in X-ray diffractograms. This suggests the possible existence of the hydroxy-Al interlayerecl vermiculite. Na-citrate extraction method reaconfirms this result showing transition of $14\;{\AA}$ peak to $10\;{\AA}$ In by removing the interlayer materials and restoring the vermiculite to its original state. The occurrence of hydroxy-Al interlayered vermiculite is also supported by soil pH distribution room 3.9 In the lower part to 3.6 in the upper part of the profile. Sequential extraction experiment was conducted to investigate the states of heavy metals in soils. The experiment shows that relatively high amounts of heavy metals are concentrated in the upper part of the profile and that most of them are bound to Fe/Mn oxides and organic matters while less concentration in clay minerals. The result indicates that most of heavy metal pollutants are concentrated in the surface soil and that the low concentrations of heavy metals in clays are mainly due to the low adsorption capacities of clay minerals such as kaolin minerals and hydroxy-Al interlayered vermiculite in acidified soil condition.

Two Crystal Structures of Bromine Sorption Complexes of Vacuum Dehydrsted Fully Cd(II) -Exchanged Zeolite A (카드뮴 이온으로 완전히 치환된 제올라이트 A를 진공 탈수한 후 브롬 증기로 흡착한 두개의 결정구조)

  • 고광락;장세복
    • Korean Journal of Crystallography
    • /
    • v.3 no.1
    • /
    • pp.9-22
    • /
    • 1992
  • Two crystal structures of bromine sorption complexes of vacuum dehydrated Cd(ll)-exchanged zeolite A have been determined by single-crystal xray diffraction techniques in the cubic space group Pm3m at 21(1) ℃. Both crystals were ion exchanged in flowing streams of exchange solution In which mole ratio of Cd(NO3)2 and Cd(OOCCH3)B was 1:1 with a total concentration of 0.05 M. First crystal was dehydrated at 450℃ and 2 ×10-6 Torr for two days. Second crystal was dehydrated at 650℃ and 2 ×10-6 Torr for two days. Both crystals were then treated with 160 Torr for two days. Second crystal was dehydrated at 650℃ and 2 × 10-6 Torr for two days. Both crystals were then treated with 160 Torr of zeolitically dried bromine vapor at 24℃. Full-matrix least-squares refinements of toe first crystal(a: 12.250(1) A )· and the second crystal(a: 12.204(2) A ) have contecoed to final error indices, Rl:0.075 and Ra:0.079 with 212 reflections, and Rl : 0.089 and Ra = 0.078 with 128 reflections, respectively, for which I >3σ(I). Crystallographic analyses of both crystals show that six Cd2+ ions are located on two different threefold axes of unit cell associated with 6-ring oxygens. Each 4.5 Cd2+ ion is recessed ca.0. 441 A Into the large cavity to complex either with Brsor with Br3from the (111) plane of 0(3), whereas each 1.5 Cd2+ ions recessed ca. 0.678 A into we sodalite unit. Approximately 1.5 Br5-and 1.5 Br3-ions are sorbed per unit cell. Each Brsion interacts and stabilized by complexing with two Cd2+ ions and framework oxide ions, while each Br3ion interacts with one Cd2+ ion and framework oxide ions. Because of residual water molecules the following reactions may be occurred inside of zeolite cavity:

  • PDF

Mössbauer Study of Tb2Bi1GaxFe5-xO12(x=0, 1) (Tb2Bi1GaxFe5-xO12(x=0, 1)의 뫼스바우어 분광연구)

  • Park, Il-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.67-70
    • /
    • 2008
  • $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) fabricated by sol-gel and vacuum sealed annealing process. $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) have been studied by x-ray diffraction(XRD), vibrating sample magnetometer, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structures were found to be a cubic garnet structure with space group Ia3d. The determined lattice constants $a_0$ of x = 0, and 1 are $12.497\AA$, and $12.465\AA$, respectively. The distribution of gallium and iron in $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$ is studied by Rietveld refinement. Based on Rietveld refinement results, the terbium and bismuth ions occupy the 24c site, iron ions occupy the 24d, l6a site, and nonmagmetic gallium ions occupy the 16a site. In order to verify the magnetic site occupancy of iron and gallium, we have taken $M\ddot{o}ssbauer$ spectra for $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) at room temperature. From the results of $M\ddot{o}ssbauer$ spectra analysis, the absorption area ratios of Fe ions for $Tb_2Bi_1Fe_5O_{12}$ on 24d and 16a sites are 60.8 % and 39.2 %, respectively, and the absorption area ratios of Fe ions for $Tb_2Bi_1Fe_5O_{12}$ on 24d and 16a sites are 74.7 % and 25.3 %, respectively. It is noticeable that all of the nonmagnetic Ga atoms occupy the 16a site by vacuum annealing process.

Heavy Metal Contamination of Soils and Stream Sediments at the Sanggok Mine Drainage, Upper Chungju Lake, Korea (충주호 상류, 상곡광산 수계에 분포하는 토양과 하상퇴적물의 중금속 오염)

  • 이현구;이찬희
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 1998
  • Heavy metal contamination in subsurface soils and stream sediments at the Suggok mine area were investigated on the basis of major, trace and rare earth elements geochemistry and mineralogy. The Sanggok mine area is mainly composed of Cambro-Ordovician carbonate rocks. The mine had been mined for Pb-Zn-Fe and Au- Ag, but already closed in past. For major elements, especially Fe (mean value=18.58 wt.%) and Mn (mean value=4. 18 wt.%) are enriched in soils, and the average enrichment indices of soils and sediments are 6.84 and 1.54, respectively. The average enrichment index of rare earth elements are 0.92 of mining drainage sediments and 0.52 of subsurface soils on the tailing dam. Concentrations of minor and/or environmental toxic elements in those samples range from 29 to 3400 for As,1 to 11 for Cd, 35 to 292 for Cu, 50 to 1827 for Pb, 1 to 22 for Sb and 112 to 2644 for Zn. Extremely high concentrations (mean values) are found in subsurface soils on the tailing dam (As=2278, Cd=7, Cu=206, Pb=1372, Sb=14 and Zn=2231 ppm, respectively). Average enrichment index normalized by composition of non-mining drainage sediments is 2.42 in mining drainage sediments and 25.47 in subsurface soils on the tailing dam. Based on EPA value, enrichment index of toxic elements is 0.53 in non-mining drainage sediments, 1.84 in mining drainage sediments and 23.71 in subsurface soils on the tailing dam. As a results from X-ray powder diffraction method, mineral composition of soils and sediments near the mine area varied in part, and are calcite, dolomite, magnesite, quartz, mica, chlorite and clay minerals. With the separation of heavy minerals, soils and sediments of highly concentrated toxic elements included some pyrite, arsenopyrite, sphalerite, galena, goethite and hydroxide minerals on the polished sections.

  • PDF