• Title/Summary/Keyword: Differentiation and mineralization

Search Result 154, Processing Time 0.027 seconds

Dynamics of Carbon Sequestered in Concentric Layers of Soil Macroaggregates

  • Park, Eun-Jin;Smucker, Alvin J.M.
    • The Korean Journal of Ecology
    • /
    • v.28 no.4
    • /
    • pp.181-188
    • /
    • 2005
  • Methods used to study carbon sequestration by soil aggregates have often excluded the concentric spatial variability and other dynamic processes that contribute to resource accessibility and solute transport within aggregates. We investigated the spatial gradients of carbon (C) and nitrogen (N) from the exterior to interior layers within macroaggregates, $6.3\sim9.5$ mm, sampled from conventional tillage (CT) and no tillage (NT) sites of a Hoytville silt clay loam. Spatial gradients in C accumulation within macroaggregates were related to the differences in C dynamics by determining the sizes and the turnover rates of fast C and slow C pools in the concentric layers of aggregates. Aggregate exteriors contained more labile C and were characterized by greater C mineralization rates than their interiors in both management systems. In contrast, C in the interior layers of aggregates was more resistant in both systems. These results indicated the spatial differentiation of C dynamics within macroaggregates, i.e., exterior layers as a reactive site and interior layers as a protective site. Greater total C distribution in the exterior layers of NT aggregates indicated more influx of C from the macropores in interaggregate space than C. mineralization (net gain of C), whereas lower C distribution within the exterior layers of CT aggregates indicated net loss of C by greater C mineralization than C influx. We found total C increased approximately 1.6-fold by the conversion of CT soils to NT management systems for a period of 36 years. Differences in total accumulation and the spatial distribution of C within aggregates affected by management were attributed to the differences in aggregate stability and pore networks controlling the spatial heterogeneities of resource availability and microbial activity within aggregates.

Dickkopf-1 is involved in BMP9-induced osteoblast differentiation of C3H10T1/2 mesenchymal stem cells

  • Lin, Liangbo;Qiu, Quanhe;Zhou, Nian;Dong, Wen;Shen, Jieliang;Jiang, Wei;Fang, Ji;Hao, Jie;Hu, Zhenming
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.179-184
    • /
    • 2016
  • Bone morphogenetic protein 9 (BMP9) is a potent inducer of osteogenic differentiation of mesenchymal stem cells. The Wnt antagonist Dickkopf-1 (Dkk1) is involved in skeletal development and bone remodeling. Here, we investigated the role of Dkk1 in BMP9-induced osteogenic differentiation of MSCs. We found that overexpression of BMP9 induced Dkk1 expression in a dose-dependent manner, which was reduced by the P38 inhibitor SB203580 but not the ERK inhibitor PD98059. Moreover, Dkk1 dramatically decreased not only BMP9-induced alkaline phosphatase (ALP) activity but also the expression of osteocalcin (OCN) and osteopontin (OPN) and matrix mineralization of C3H10T1/2 cells. Furthermore, exogenous Dkk1 expression inhibited Wnt/β-catenin signaling induced by BMP9. Our findings indicate that Dkk1 negatively regulates BMP9-induced osteogenic differentiation through inhibition of the Wnt/β-catenin pathway and it could be used to optimize the therapeutic use of BMP9 and for bone tissue engineering.

THE EFFECTS OF GINGIVAL FIBROBLAST ON THE MINERALIZATION OF THE RAT BONE MARROW STROMAL CELL (백서 골수세포의 석회화 과정에 미치는 치은 섬유아세포의 영향)

  • Kim, Seuk-Yong;Kwon, Young-Hyuk;Park, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.210-221
    • /
    • 1995
  • The purpose of this study was performed to investigate the mineralization and differentiation of osteobalsts for bone regeneration in vitro and the effect of rate of the composition in periodontal cells on mineralization. For this study, healthy gingival tissues were surgically obtained from the patients during 1st premolar extraction for the purposes of orthodontic treament. Gingival tissue was washed several time with Phosphate buffered saline contained high concentration of antibiotics and antifungal agent, and cultured in Dulbecco's Modified Eagle's Medium(DMEM, Gibco, U.S.A.). Every cell were cultured in state at $37^{\circ}C$, 100% of humidity, 5% of $CO_2$ incubator. Bone marrow stromal cells were isolated from 5-clay-old rat femur with using medium irrigation mathod by syringe. Cell suspension medium were centrifuged at 1500 rpm for 5 min and then cultured in the petri dish. Two kinds of cell were freezed and stocked in the liquid nitrogen tank until experiment. Cell were incubated into the 24 multi-well plate with $5{\times}10^4$cell/well of medium at $37^{\circ}C$, 100% of humidity 5% $CO_2$ incubator for 24 hours. After discarded of the supernatent of medium, O.5ml of medium were reapplied and incubated. And counted the number of cell using the hemocytometer and inverted light microscope. We have measured the number of mineralized nodule with using Alizarin red S. staining in microscope. Furthermore every cell were observed the morphological change between every rate of co-culture of the two kinds of cell. The results were as follows; The rate of proliferation of co-culture cell revealed high rate tendency compared the bone marrow stromal cell only and low growth rate to compared with gingival fibroblast only. The tendency of formation of the mineralized nodule were observed dose-depend pattern of bone marrow stromal cell. It is concluded that the gingival fibroblast may inhibit the formation of mineralized nodule in the culture of the bone marrow stromal cell.

  • PDF

Differential Expression of Osteonectin in the Rat Developing Molars

  • Kim, Jung-Ha;Yoo, Hong-Il;Oh, Min-Hee;Yang, So-Young;Kim, Min-Seok;Kim, Sun-Hun
    • International Journal of Oral Biology
    • /
    • v.37 no.2
    • /
    • pp.51-56
    • /
    • 2012
  • Tooth development involves bud, cap, bell and hard tissue formation stages, each of which is tightly controlled by regulatory molecules. The aim of this study was to identify genes that are differentially expressed during dental hard tissue differentiation. Sprague-Dawley rats at postnatal days 3, 6 and 9 were used in the analysis. Differential display RT-PCR (DD-PCR) was used to screen differentially expressed genes between the 2nd (root formation stage, during mineralization) and 3rd (cap stage, before mineralization) molar germs at postnatal day 9. The DNA detected in the 2nd molar germs showed homology to osteonectin only (GenBank accession no. NM_012656.1). The level of osteonectin mRNA expression was much higher in the 2nd molar germs than in the 3rd molar germs and was found to increase in a time-dependent manner from the early bell stage to the root formation stage in the 2nd molar germs. The pattern of osteonectin protein expression was consistent with these RT-PCR results. Osteonectin protein was found by immunofluorescent analysis to localize in odontoblasts and preodontoblasts rather than the dentin matrix itself. Further studies are needed to validate the involvement of osteonectin in mineralization and root formation.

Predictive Exploration of the Cretaceous Major Mineral Deposits in Korea : Focusing on W-Mo Mineralization (한국 백악기 주요 금속광상의 예측 탐사 : W-Mo 광화작용을 중심으로)

  • Choi, Seon-Gyu;Kang, Jeonggeuk;Lee, Jong Hyun
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.323-336
    • /
    • 2019
  • The Mesozoic activity on the Korean Peninsula is mainly represented by the Triassic post-collisional, Jurassic orogenic, and Cretaceous post-orogenic igneous activities. The diversity of mineralization by each geological period came from various geothermal systems derived from the geochemical characteristics of magma with different emplacement depth. The Cretaceous metallic mineralization has been carried out over a wide range of time periods from ca. 115 to 45 Ma (main stage; ca. 100 to 60 Ma) related to post-orogenic igneous activity, and spatial distribution patterns of most metal deposits are concentrated along small granitic stocks. The late Cretaceous metal deposits in the Gyeonggi and Yeongnam massifs are generally distributed along the boundary among the Gongju-Eumseong fault system and the Yeongdong-Gwangju fault system and the Gyeongsang Basin, most of them are in the form of a distal epithermal~mesothermal Au-Ag vein or a transitional mesothermal Zn-Pb-Cu vein. On the other hand, diverse metal commodities in the Taebaeg Basin, the Okcheon metamorphic belt and the Gyeongsang Basin are produced from various deposit types such as skarn, carbonate-replacement, vein, porphyry, breccia pipe, and Carlin type. In the late Cretaceous metallic mineralization, various mineral deposits and commodities were induced not only by the pathway of the hydrothermal solution, but also by the diversity of precipitation environment in the proximity difference of the granitic rocks. The diversity of these types of Cretaceous deposits is fundamentally dependent on the geochemical characteristics such as degree of differentiation and oxidation state of related igneous rocks, and ore-forming fluids generally exhibit the evolutionary characteristics of intermediate- to low-sulfur hydrothermal fluids.

Effect of Acer tegmentosum Maxim. extract on differentiation of osteoblastic Primary calvarial osteoblasts cells (조골세포의 분화에 산겨릅나무 추출물이 미치는 영향)

  • Oh, Tae Woo;Shim, Ki-Shuk;Kim, Kwang-Youn;Cho, Won-Kyung;Park, Kwang Il;Ma, Jin Yeul
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.527-536
    • /
    • 2017
  • Objectives : The present study, to confirm the osteoblast differentiation effects of Acer tegmentosum Maxim. (AT) extract. Methods : In this experiment, cell viability, Alizarin red S assay, and Alkaline phosphatase (ALP) activity with AT extract (50, $100{\mu}g/m{\ell}$). Also, we studied the expression of differentiation regulator with AT extract in primary calvarial osteoblasts cells (pOB). Results : As a result of AT treatment, we determined that AT extract stimulates ALP activity and alizarin red activities in the pOB cells for mineralization for 18 days. Moreover, these factors increasing osteogenic markers such as Runt-related transcription factor2 ($Run{\times}2$), osteocalcin (OC), osteopontin, osterix, smad1, smad5, activating transcription factor4 (ATF4) and collagen type I alpha 1. Conclusions : These results indicate that AT extract have effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of bone diseases.

A study on the osteoblast differentiation using osteocalcin gene promoter controlling luciferase expression (리포터유전자를 이용한 조골세포 분화정도에 관한 연구)

  • Kim, Kyoung-Hwa;Park, Yoon-Jeong;Lee, Yong-Moo;Han, Jung-Suk;Lee, Dong-Soo;Lee, Seung-Jin;Chung, Chong-Pyoung;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.4
    • /
    • pp.839-847
    • /
    • 2006
  • The aim of this study is to monitor reporter gene expression under osteocalcin gene promoter, using a real-time molecular imaging system, as tool to investigate osteoblast differentiation. The promoter region of mouse osteocalcin gene 2 (mOG2), the best-characterized osteoblast-specific gene, was inserted in promoterless luciferase reporter vector. Expression of reporter gene was confirmed and relationship between the reporter gene expression and osteoblastic differentiation was evaluated. Gene expression according to osteoblstic differentiation on biomaterials, utilizing a real-time molecular imaging system, was monitored. Luciferase was expressed at the only cells transduced with pGL4/mOGP and the level of expression was statistically higher at cells cultured in mineralization medium than cells in growth medium. CCCD camera detected the luciferase expression and was visible differentiation-dependent intensity of luminescence. The cells produced osteocalcin with time-dependent increment in BMP-2 treated cells and there was difference between BMP-2 treated cells and untreated cells at 14days. There was difference at the level of luciferase expression under pGL4/mOGP between BMP-2 treated cells and untreated cells at 3days. CCCD camera detected the luciferase expression at cells transduced with pGL4/mOGP on Ti disc and was visible differentiation-dependent intensity of luminescence This study shows that 1) expression of luciferase is regulated by the mouse OC promoter, 2) the CCCD detection system is a reliable quantitative gene detection tool for the osteoblast differentiation, 3) the dynamics of mouse OC promoter regulation during osteoblast differentiation is achieved in real time and quantitatively on biomaterial. The present system is a very reliable system for monitoring of osteoblast differentiation in real time and may be used for monitoring the effects of growth factors, drug, cytokines and biomaterials on osteoblast differentiation in animal.

Effects of a xenographic bovine bone on the bone mineralization in human fetal osteoblasts (우골 유도 합성골이 사람 태아 골모세포의 골 광물화 과정에 미치는 영향)

  • Sun, Ki-Jong;Hyun, Ha-Na;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.801-809
    • /
    • 2002
  • The ultimate goal of periodontal therapy is to promote the regeneration of lost periodontal tissue, there have been many attempts to develop a method to achieve this goal, hut none of them was completely successful. The purpose of this study is to evaluate the effects of Bio-Oss(R) on alkaline Phosphatase (ALP) activity in human fetal osteoblasts (hFOB1). The results of this study were as follows, in ALP Activity, 100 ${\mu}g/ml$ Bio-Oss(R) treated group showed significantly increased value than negative control group, but positive group($10^{-7}$ M dexamethasone treated group) showed the highest ALP activity at 3 day. In mineralization assay, numerous mineralized nodules were identified as darkly stained spots in 100${\mu}g/ml$ Bio-Oss(R) treated group than two control groups, whereas a small number of mineralized nodules were showed in the positive control. ALP may relate to the initial phase of bone nodule formation. On the basis of these results, this study showed Bio-Oss(R) is capable of accelerating new bone formation through hFOBl differentiation in vitro.

EXPRESSION AND FUNCTION OF OD314, APIN PROTEIN, DURING AMELOBLAST DIFFERENTIATION AND AMELOGENESIS (법랑모세포 분화와 법랑질 형성과정에서 OD314, Apin protein의 발현 및 기능)

  • Park, Jong-Tae;Choi, Yong-Seok;Kim, Heung-Joong;Jeong, Moon-Jin;Oh, Hyun-Ju;Shin, In-Cheol;Park, Joo-Cheol;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.6
    • /
    • pp.437-444
    • /
    • 2006
  • This study was aimed to elucidate the biological function of OD314 (Apin protein), which is related to ameloblast differentiation and amelogenesis. Apin protein, calcifying epithelial odontogenic (pindborg) tumors (CEOTs)-associated amyloid, were isolated from CEOTs, and has similar nucleotide sequences to OD314. We examined expression of the OD314 mRNA using in-situ hybridization during tooth development in mice. Expression of OD314 and several enamel matrix proteins were examined in the cultured ameloblast cell line up to 28 days by reverse transcription-polymerase chain reaction (RT-PCR) amplification. After inactivation and over-expression of the OD314 gene in ameloblast cell lines using U6 vectordriven RNA interference and CMV-OD314 construct, RT-PCR were performed to evaluate the effect of the OD314 during amelogenesis. The results were as follows: 1. In in-situ hybridization, OD314 mRNAs were more strongly expressed in ameloblast than odontoblast. 2. When ameloblast cells were cultured in the diffcrentiation and mineralization medium for 28 days, the tuftelin mRNA expression was maintained from the beginning to day 14, and then gradually decreased to day 28. The expressions of amelogenin and enamelin were gradually decreased according to the ameloblast differentiation. 3. Inactivation of OD314 by U6-OD314 siRNA construct down-regulated the expression of OD314, MMP-20, and tuftelin, whereas over-expression of OD314 by CMV-OD314 construct up-regulated the expression of OD314 and MMP-20 without change in tuftelin. These results suggest that OD314 is considered as an ameloblast-enriched gene and may play the important roles in ameloblast differentiation and mineralization.

Effect of Safflower and Safflower Seed Extract on Osteogenic Differentiation of MC3T3E1 Cells (홍화, 홍화씨 추출물이 MC3T3E1 세포의 골분화 과정에 미치는 영향)

  • Yu, Sung-ryul;Shin, Seon-mi
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.518-526
    • /
    • 2015
  • Objectives This study investigated the effect of purified safflower (Carthamus tinctorius Linne) and safflower seed (Carthamus tinctorius L. seed; CS) extract, using hot water and ethanol extract methods , on the osteogenic differentiation of MC3T3E1 cells.Methods The safflower and safflower seed were extracted with hot water and ethanol. The samples were concentrated by a rotary evaporator and then freeze-dried using a freeze-dryer. The MC3T3E1 cells were propagated and maintained in DMEM (Gibco) containing 10% FBS and a 1% antibiotic antimycotic solution. To induce osteogenic differentiation, the cells were treated for 14 days with DMEM with 10 mM β-glycerophosphate and 50 μM ascorbic acid. Extract doses were confirmed by the results of an MTT assay, and treatment of the extracts was performed in a differentiation medium every two days. The ALP staining and activity were tested after osteogenic differentiation for five days, and after 14 days, osteogenic differentiation was determined by alizarin red S staining. The mRNA expressions of osteogenic-related genes were quantified using quantitative real-time PCR.Results In the results of the MTT assay, all concentrations of safflower extracts had no toxicity in the MC3T3El cells. But in the groups of 100 ng/ml and 200 ng/ml concentrations of safflower seed extracts, the cell viability was significantly reduced by up to 40-50%. So we fixed the treatment concentration of the extract at 50 ng/ml. In the ALP and alizarin red S staining, all extract groups increased osteogenic differentiation compared with the control group. The water-safflower extract group showed the highest mRNA level of Alp, Runx2, and Dlx5 genes. The mRNA level of Ocn, an osteogenic gene related to late-stage differentiation, in the ethanol-safflower extract group increased the mineralization more significantly than in other groups.Conclusions These data suggest that the extract of safflower increases the osteoblastic differentiation activates of MC3T3E1 cells like the extract of safflower seed. The water-extract and ethanol-extract of safflower have effects on different stages of osteogenesis in MC3T3El. Not only safflower seed but also safflower will be useful therapeutic reagents for age-associated chronic diseases such as osteoporosis.