• Title/Summary/Keyword: Differentiated stem cells

Search Result 215, Processing Time 0.023 seconds

In Vitro Differentiation of Mesenchymal Progenitor Cells Derived from Porcine Umbilical Cord Blood

  • Kumar, Basavarajappa Mohana;Yoo, Jae-Gyu;Ock, Sun-A;Kim, Jung-Gon;Song, Hye-Jin;Kang, Eun-Ju;Cho, Seong-Keun;Lee, Sung-Lim;Cho, Jae-Hyeon;Balasubramanian, Sivasankaran;Rho, Gyu-Jin
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.343-350
    • /
    • 2007
  • Mesenchymal stem/progenitor cells (MPCs) were isolated from porcine umbilical cord blood (UCB) and their morphology, proliferation, cell cycle status, cell-surface antigen profile and expression of hematopoietic cytokines were characterized. Their capacity to differentiate in vitro into osteocytes, adipocytes and chondrocytes was also evaluated. Primary cultures of adherent porcine MPCs (pMPCs) exhibited a typical fibroblast-like morphology with significant renewal capacity and proliferative ability. Subsequent robust cell growth was indicated by the high percentage of quiescent (G0/G1) cells. The cells expressed the mesenchymal surface markers, CD29, CD49b and CD105, but not the hematopoietic markers, CD45 and CD133 and synthesized hematopoietic cytokines. Over 21 days of induction, the cells differentiated into osteocytes adipocytes and chondrocytes. The expression of lineage specific genes was gradually upregulated during osteogenesis, adipogenesis and chondrogenesis. We conclude that porcine umbilical cord blood contains a population of MPCs capable of self-renewal and of differentiating in vitro into three classical mesenchymal lineages.

Bone Morphogenic Protein-2 (BMP-2) Immobilized Biodegradable Scaffolds for Bone Tissue Engineering

  • Kim, Sung-Eun;Rha, Hyung-Kyun;Surendran, Sibin;Han, Chang-Whan;Lee, Sang-Cheon;Choi, Hyung-Woo;Choi, Yong-Woo;Lee, Kweon-Haeng;Rhie, Jong-Won;Ahn, Sang-Tae
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.565-572
    • /
    • 2006
  • Recombinant human bone morphogenic protein-2 (rhBMP-2), which is known as one of the major local stimuli for osteogenic differentiation, was immobilized on the surface of hyaluronic acid (HA)-modified poly$(\varepsilon-caprolactone)$ (PCL) (HA-PCL) scaffolds to improve the attachment, proliferation, and differentiation of human bone marrow stem cells (hBMSCs) for bone tissue engineering. The rhBMP-2 proteins were directly immobilized onto the HA-modified PCL scaffolds by the chemical grafting the amine groups of proteins to carboxylic acid groups of HA. The amount of covalently bounded rhBMP-2 was measured to 1.6 pg/mg (rhBMP/HA-PCL scaffold) by using a sandwich enzyme-linked immunosorbant assay. The rhBMP-2 immobilized HA-modified-PCL scaffold exhibited the good colonization, by the newly differentiated osteoblasts, with a statistically significant increase of the rhBMP-2 release and alkaline phosphatase activity as compared with the control groups both PCL and HA-PCL scaffolds. We also found enhanced mineralization and elevated osteocalcin detection for the rhBMP-2 immobilized HA-PCL scaffolds, in vitro.

Surface Topographical Cues for Regulating Differentiation of Human Neural Stem Cells

  • Yang, Kisuk;Lee, Jong Seung;Lee, Jaehong;Cheong, Eunji;Lee, Taeyoon;Im, Sung Gap;Cho, Seung-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.122.2-122.2
    • /
    • 2016
  • Surface topographical cues has been highlighted to control the fate of neural stem cells (NSCs). Herein we developed a hierarchically patterned substrate (HPS) platform for regulating NSC differentiation. The HPS induced cytoskeleton alignment and highly activated focal adhesion in hNSCs as indicated by enhanced expression of focal adhesion proteins such as focal adhesion kinase (FAK) and vinculin. hNSCs cultured on HPS exhibited enhanced neuronal differentiation compared to flat group. We also developed a graphene oxide (GO)-based hierarchically patterned substrates (GPS) that promote focal adhesion formation and neuronal differentiation of hNSCs. Enhanced focal adhesion and differentiation of hNSCs on the HPS was reversed by blocking the ${\beta}1$ integrin binding and mechanotransduction-associated signals including Rho-associated protein kinase (ROCK) and extracellular-regulated kinase (ERK) pathway, which may suggest a potential mechanism of beneficial effects of HPS. In addition, hNSCs on the HPS differentiated into functional neurons exhibiting sodium currents and action potentials as confirmed by whole cell patch-clamping analysis. The hierarchical topography can direct differentiation of NSCs towards functional neurons, and therefore would be an important element for the design of functional biomaterials for neural tissue regeneration applications.

  • PDF

Differentiation and Apoptosis of the Mammalian Embryo and Embryonic Stem Cells(ESC): I. Establishment of Mouse ESC and Induction of Differentiation by Reproductive Hormones (포유동물의 배아 및 기간세포의 분화와 세포사멸 기작: I. 생쥐 배아줄기세포의 확립과 분화유도에 미치는 생식호르몬의 영향)

  • 성지혜;윤현수;이종수;김철근;김문규;윤용달
    • Development and Reproduction
    • /
    • v.6 no.1
    • /
    • pp.55-66
    • /
    • 2002
  • Embryonic stem cells(ES cells) are derived from the inner cell mass(ICM) of blastocysts, which have the potentials to remain undifferentiated, to proliferate indefinitely in vitro, to differentiate into the derivates of three embryonic germ layers. ES cells are an attractive model system for studying the initial developmental decisions and their molecular mechanisms during embryogenesis. Additionally, ES cells of significant interest to those characterizing the various gene functions utilizing transgenic and gene targeting techniques. We investigated the effects of reproductive hormones, gonadotropins(GTH) and steroids on the induction of differentiation and expressions of their receptor genes using the newly established mouse ES cells. We collected the matured blastocysts of inbred mice C57BL/6J after superovulation and co-cultured with mitotically inactivated STO feeder cells. After 5 passages, we confirmed the expression alkaline phosphatase(Alk P) activity and SSEA-1, 3, 4 expressions. The protocol devised for inducing ES differentiation consisted of an aggregation steps, after 5 days as EBs in hormone treatments(FSH, LH, E$_2$, P$_4$, T) that allows complex signaling to occur between the cells and a dissociation step, induced differentiation through attachment culture during 7 days in hormone treatments. Hormone receptors were not increased in dose-dependent manner. All hormone receptors in ES cells treated reproductive hormones were expressed lower than those of undifferentiated ES cell except for LHR expression in E$_2$-treated ES cells group. After hormone induced differentiation, at least some of the cells are not terminally differentiated, as is evident from the expression of Oct-4, a marker of undifferentiated. To assess their differentiation by gene expression, we analyzed the expression of 7 tissue-specific markers from all three germ layers. Most of hormone-treated group increased in the expression of gata-4 and $\alpha$ -fetoprotein, suggesting reproductive hormone allowed or induced differentiation of endoderm.

  • PDF

Differentiation of Dopaminergic and Cholinergic Neurons from Mesenchymal-like Stem Cells Derived from the Adipose Tissue (사람 지방 유래 중간엽 줄기세포의 도파민성 및 콜린성 신경세포분화)

  • Hong, In-Kyung;Jeong, Na-Hee;Kim, Ju-Ran;Do, Byung-Rok;Kim, Hea-Kwon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • Neural tissue has limited intrinsic capacity of repair after injury, and the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesechymal-like stem cells from human adipose tissues (AT-MSCs), and studied on transdifferentiation-promoting conditions in neural cells. Dopaminergic and cholinergic neuron induction of AT-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulphoxide (DMSO) and butylated hydroxyanisole(BHA) in N2 Medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. AT-MSCs treated with bFGF, SHH and FGF8 were differentiatied into dopaminergic neurons that were immunopositive for TH antibody. Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor (bFGF), retinoic acid (RA) and sonic hedgehog (Shh). AT-MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including neuro D1, $\beta$-tubulin III, GFAP and nestinwas markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after preinduction medium culture, we confirmed the differentiation of dopaminergic and cholinergic neurons by TH/$\beta$-tubulin III or ChAT/ $\beta$-tubulin III positive cells. Conclusively, AT-MSCs can be differentiated into dopaminergic and cholinergic neuronsand these findings suggest that AT-MSCs are alternative cell source of treatment for neurodegenerative diseases.

  • PDF

Effects of Human Mesenchymal Stem Cell Transplantation Combined with Polymer on Functional Recovery Following Spinal Cord Hemisection in Rats

  • Choi, Ji Soo;Leem, Joong Woo;Lee, Kyung Hee;Kim, Sung-Soo;SuhKim, Haeyoung;Jung, Se Jung;Kim, Un Jeng;Lee, Bae Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.405-411
    • /
    • 2012
  • The spontaneous axon regeneration of damaged neurons is limited after spinal cord injury (SCI). Recently, mesenchymal stem cell (MSC) transplantation was proposed as a potential approach for enhancing nerve regeneration that avoids the ethical issues associated with embryonic stem cell transplantation. As SCI is a complex pathological entity, the treatment of SCI requires a multipronged approach. The purpose of the present study was to investigate the functional recovery and therapeutic potential of human MSCs (hMSCs) and polymer in a spinal cord hemisection injury model. Rats were subjected to hemisection injuries and then divided into three groups. Two groups of rats underwent partial thoracic hemisection injury followed by implantation of either polymer only or polymer with hMSCs. Another hemisection-only group was used as a control. Behavioral, electrophysiological and immunohistochemical studies were performed on all rats. The functional recovery was significantly improved in the polymer with hMSC-transplanted group as compared with control at five weeks after transplantation. The results of electrophysiologic study demonstrated that the latency of somatosensory-evoked potentials (SSEPs) in the polymer with hMSC-transplanted group was significantly shorter than in the hemisection-only control group. In the results of immunohistochemical study, ${\beta}$-gal-positive cells were observed in the injured and adjacent sites after hMSC transplantation. Surviving hMSCs differentiated into various cell types such as neurons, astrocytes and oligodendrocytes. These data suggest that hMSC transplantation with polymer may play an important role in functional recovery and axonal regeneration after SCI, and may be a potential therapeutic strategy for SCI.

Studies on Development of New Basidiomycetes by Protoplast Fusion and Nuclear Transfer II - The Effects of the Components of the Protoplast Fusants on Mouse Immune Cells - (원형질체 융합 및 핵전이에 의한 새로운 담자균류의 개발에 관한 연구(II) - 융합균사체의 항암성분이 생쥐의 면역세포에 미치는 영향 -)

  • Moon, Chul;Kim, Chae-Kyun;Yoon, Jong-Myung;Shim, Mi-Ja;Kim, Ha-Won;Choi, Eung-Chil;Kim, Byong-Kak
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.3
    • /
    • pp.231-237
    • /
    • 1996
  • The antitumor components of the protoplast fusants of Lentinula edodes and Ganoderma lucidum were examined for immunological activity to elucidate the mechanism of their antitumor activity. They did not show any direct cytotoxicity against tumor cells. But being examined for immunopotentiation activity, they increased the number of colonies in the bone marrow stem cells to 3.0 times. They also increased the activities of the acid phosphatase in activated macrophages to 2.1 times and the secretion of nitric oxide in RAW 264.7 to 2.2 times, respectively. They activated the components of the alternative complement pathway. In humoral immunity. they increased the activities of the alkaline phosphatase in differentiated B cells to 1.6 times and the number of plaque forming cells to 1.8 times, respectively. In cellular immunity, they restored the depressed response of delayed type hypersensitivity in tumor bearing mice to normal level.

  • PDF

Effects of SIS/PLGA Porous Scaffolds and Muscle-Derived Stem Cell on the Formation of Tissue Engineered Bone (SIS/PLGA 담체와 근육유래 줄기세포를 이용한 생체조직공학적 골재생)

  • Kim Soon Hee;Yun Sun Jung;Jang Ji Wook;Kim Moon Suk;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2006
  • Tissue engineering techniques require the use of a porous biodegradable/bioresorbable scaffold, which server as a three-dimensional template for initial cell attachment and subsequent tissue formation in both in vitro and in vivo. Small intestinal submucosa (SIS) has been investigated as a source of collagenous tissue with the potential to be used as biomaterials because of its inherent strength and biocompatibility. SIS-loaded poly(L-lactide-co-glicolide)(PLGA) scaffolds were prepared by solvent casting/particle leaching. Characterizations of SIS/PLGA scaffold were carried out by SEM, mercury porosimeter, and so on. Muscle-derived stem cells can be differentiated in culture into osteoblasts, chondrocytes, and even myoblasts by the controlling the culture environment. Cellular viability and proliferation were assayed by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide(MTT) test. Osteogenic differential cells were analyzed by alkaline phosphatase(ALP) activity. SIS/PLGA scaffolds were implanted into the back of athymic nude mouse to observe the effect of SIS on the osteoinduction compared with controlled PLGA scaffolds. Thin sections were cut from paraffin embedded tissues and histological sections were conducted hematoxylin and eosin (H&E), Trichrome, and von Kossa. We observed that bone formatioin of SIS/PLGA hybrid scaffold as natural/synthetic scaffold was better thean that of only PLGA scaffold. It canb be explained that SIS contains various kinds of bioactive molecules for osteoinduction.

Possibility of Cancer Treatment by Cellular Differentiation into Adipocytes (지방세포로의 분화를 통한 악성 종양의 치료 가능성)

  • Byeong-Gyun Jeon;Sung-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.512-522
    • /
    • 2023
  • Cancer with unlimited cell growth is a leading cause of death globally. Various cancer treatments, including surgery, chemotherapy, radiation therapy, immunotherapy, and targeted therapy, can be applied alone or in combination depending on the cancer type and stage. New treatments with fewer side effects than previous cancer treatments are continually under development and in demand. Undifferentiated stem cells with unlimited cell growth are gradually changed via cellular differentiation to arrest cell growth. In this study, we reviewed the possibility of treating cancer by using cellular differentiation into the adipocytes in cancer cells. In previous in vitro studies, oral antidiabetic drugs of the thiazolidinedione (TDZ) class, such as rosiglitazone and pioglitazone, were induced into the adipocytes in various cancer cell lines via increased peroxisome proliferator-activated receptor-γ (PPAR γ) expression and glucose uptake, which is the key regulator of adipogenesis and the energy metabolism pathway. The differentiated adipogenic cancer cells treated with TDZ inhibited cell growth and had a less cellulotoxic effect. This adipogenic differentiation treatment suggests a possible chemotherapy option in cancer cells with high and abnormal glucose metabolism levels. However, the effects of the in vivo adipogenic differentiation treatment need to be thoroughly investigated in different types of stem and normal cells with other side effects.

Establishment and Characterization of Bone Marrow Mesenchymal Stromal/Stem Cells (MSCs) Derived from ${\alpha}$-1,3-Galactosyltransferase Knock Out(GalT KO) Pig (${\alpha}$-1,3-Galactosyltransferase Knock Out(GalT KO) 돼지유래 골수 중간엽 줄기세포의 특성 규명)

  • Ock, Sun-A;Oh, Keon Bong;Hwang, Seongsoo;Im, Seoki;Kim, Youngim;Park, Jin-Ki
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.281-287
    • /
    • 2013
  • A major barrier to progress in pig to primate organ transplantation or cell therapy is the presence of terminal ${\alpha}$-1,3-galactosyl epitopes on the surface of pig cells. Therefore, the purpose of this experiment was to establish and cha- racterize mesenchymal stromal/stem cells (MSCs) derived from ${\alpha}$-1,3-galactosyltransferase (GalT) knock out (GalT KO) pig to confirm their potential for cell therapy. Bone marrow (BM)-MSCs from GalT KO pig of 1 month old were isolated by Ficoll-Paque PLUS gradient and cultured with A-DMEM + 10% FBS on plastic dishes in 5% $CO_2$ incubator at 38.5. GalT KO BM-MSCs were analyzed for the expression of CD markers ($CD45^-$, $29^+$, $90^+$ and $105^+$) and in vitro differentiation ability (adiopogenesis and osteogenesis). Further, cell proliferation capacity and cell aging of GalT KO BM-MSCs were compared to Wild BM-MSCs by BrdU incorporation assay (Roche, Germany) using ELISA at intervals of two days for 7 days. Finally, the cell size was also evaluated in GalT KO and Wild BM-MSCs. Statistical analysis was performed by T-test (P<0.05). GalT KO BM-MSCs showed fibroblast-like cell morphology on plastic culture dish at passage 1 and exhibited $CD45^-$, $29^+$, $90^+$ and $105^+$ expression profile. Follow in ginduction in StemPro adipogenesis and osteogenesis media for 3 weeks, GalT KO BM-MSCs were differentiated into adipocytes, as demonstrated by Oilred Ostaining of lipid vacuoles and osteocytes, as confirmed by Alizarinred Sstaining of mineral dispositions, respectively. BrdU incorporation assay showed a significant decrease in cell proliferation capacity of GalT KO BM-MSCs compared to Wild BM-MSCs from 3 day, when they were seeded at $1{\times}10^3$ cells/well in 96-well plate. Passage 3 GalT KO and Wild BM-MSCs at 80% confluence in culture dish were allowed to form single cells to calculate cell size. The results showed that GalT KO BM-MSCs($15.0{\pm}0.4{\mu}m$) had a little larger cell size than Wild BM-MSCs ($13.5{\pm}0.3{\mu}m$). From the above findings, it is summarized that GalT KO BM-MSCs possessed similar biological properties with Wild BM-MSCs, but exhibited a weak cell proliferation ability and resistance to cell aging. Therefore, GalT KO BM-MSCs might form a good source for cell therapy after due consideration to low proliferation potency in vitro.