• 제목/요약/키워드: Differentially expressed genes(DEGs)

검색결과 165건 처리시간 0.026초

Identification of differentially expressed genes using an annealing control primer system in periodontitis

  • Na, Hee-Sam;Kim, Ji-S.;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제37권3호
    • /
    • pp.109-114
    • /
    • 2012
  • In the gingival tissues of patients with periodontitis, inflammatory responses are mediated by a wide variety of genes. In this study, we screened for differentially expressed genes (DEGs) in periodontitis compared with normal tissue using an annealing control primer (ACP) system. By ACP RT-PCR analysis, we obtained about 160 amplicons, 8 of which were found to be differentially expressed. DEGs in patients with periodontitis were thus successfully and reliably identified by the ACP-based RT PCR technique. The DEGs identified in the screen may also enhance our understanding of the pathogenesis of periodontitis.

Identification of Differentially Expressed Genes (DEGs) by Malachite Green in HepG2 Cells

  • Kim, Youn-Jung;Song, Mee;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제4권1호
    • /
    • pp.22-30
    • /
    • 2008
  • Malachite Green (MG), a toxic chemical used as a dye, topical antiseptic and antifungal agent for fish, is highly soluble in water, cytotoxic to various mammalian cells and also acts as a liver tumor promoter. In view of its industrial importance and possible exposure to human beings, MG possesses a potential environmental health hazard. So, we performed with HepG2, a human hepatocellular carcinoma cell line, to identify the differentially expressed genes (DEGs) related to toxicity of MG. And we compared gene expression between control and MG treatment to identify genes that are specifically or predominantly expressed by employing annealing control primer (ACP)-based $GeneFishing^{TM}$ method. The cytotoxicity $(IC_{20})$ of MG was determined above the $0.867{\mu}M$ in HepG2 cell for 48 h treatment. And the DEGs of MG were identified that 5 out of 6 DEGs were upregulated and 1 out of 6 DEGs was down-regulated by MG. Also, MG induced late apoptosis and necrosis in a dose dependent in flow cytometric analysis. Through further investigation, we will identify more meaningful and useful DEGs on MG, and then can get the information on mechanism and pathway associated with toxicity of MG.

A network-biology approach for identification of key genes and pathways involved in malignant peritoneal mesothelioma

  • Mahfuz, A.M.U.B.;Zubair-Bin-Mahfuj, A.M.;Podder, Dibya Joti
    • Genomics & Informatics
    • /
    • 제19권2호
    • /
    • pp.16.1-16.14
    • /
    • 2021
  • Even in the current age of advanced medicine, the prognosis of malignant peritoneal mesothelioma (MPM) remains abysmal. Molecular mechanisms responsible for the initiation and progression of MPM are still largely not understood. Adopting an integrated bioinformatics approach, this study aims to identify the key genes and pathways responsible for MPM. Genes that are differentially expressed in MPM in comparison with the peritoneum of healthy controls have been identified by analyzing a microarray gene expression dataset. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of these differentially expressed genes (DEG) were conducted to gain a better insight. A protein-protein interaction (PPI) network of the proteins encoded by the DEGs was constructed using STRING and hub genes were detected analyzing this network. Next, the transcription factors and miRNAs that have possible regulatory roles on the hub genes were detected. Finally, survival analyses based on the hub genes were conducted using the GEPIA2 web server. Six hundred six genes were found to be differentially expressed in MPM; 133 are upregulated and 473 are downregulated. Analyzing the STRING generated PPI network, six dense modules and 12 hub genes were identified. Fifteen transcription factors and 10 miRNAs were identified to have the most extensive regulatory functions on the DEGs. Through bioinformatics analyses, this work provides an insight into the potential genes and pathways involved in MPM.

누에에서 곰팡이(Aspergillus niger) 감염에 의해 유도 발현되는 유전자의 클로닝과 동정 (Cloning and Identification of Differentially Expressed Genes Induced by Fungal Infection from Silkworm, Bombyx mori)

  • 이진성;홍수영;이기화
    • 생명과학회지
    • /
    • 제20권6호
    • /
    • pp.929-933
    • /
    • 2010
  • 본 연구는 곤충으로부터 새로운 항 진균 단백질을 발굴하기 하기 위한 목적으로 누에를 대상으로 Aspergillus niger의 감염을 유도하였을 때 발현되는 유전자의 특성을 분석한 것이다. Annealing control primer 법에 기초한 GeneFishing Kit를 사용하여 A. niger를 약 $6{\times}10^8$ colony per unit로 5령기 누에 유충의 체강에 감염시킨 후, 6시간 경과한 다음에 유도 발현되는 유전자(differentially expressed genes, DEGs)를 분석 한 결과, 10개의 유도 발현되는 유전자를 분리하였고 RT-PCR을 통해서 lysozyme, enbocin 그리고 한 개의 기능이 알려지지 않는 유전자등 3개의 유전자가 A. niger의 감염에 의해서 유의하게 과 발현된다는 것을 검증하였다. 일반적으로 그람 음성 및 양성 세균의 감염에 의해 유도된다고 알려진 enbocin 유전자가 A. niger의 감염에서도 과 발현이 유도되는 본 연구의 결과는 앞으로 enbocin 유전자의 항 진균 활성 연구에 중요한 기초 자료로 활용될 수 있을 것이다.

Identification of Biomarkers for Diagnosis of Gastric Cancer by Bioinformatics

  • Wang, Da-Guang;Chen, Guang;Wen, Xiao-Yu;Wang, Dan;Cheng, Zhi-Hua;Sun, Si-Qiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1361-1365
    • /
    • 2015
  • Background: We aimed to discover potential gene biomarkers for gastric cancer (GC) diagnosis. Materials and Methods: Genechips of 10 GC tissues and 10 gastric mucosa (GM, para-carcinoma tissue, normal control) tissues were generated using an exon array of Affymetrix containing 30,000 genes. The differentially expressed genes (DEGs) between GC tissues and normal control were identified by the Limma package and analyzed by hierarchical clustering analysis. Gene ontology (GO) and pathway enrichment analyses were performed for investigating the functions of DEGs. Receiver operating characteristics (ROC) analysis was performed to measure the effects of biomarker candidates for diagnosis of GC. Results: Totals of 896 up-regulated and 60 down-regulated DEGs were identified to be differentially expressed between GC samples and normal control. Hierarchical clustering analysis showed that DEGs were highly differentially expressed and most DEGs were up-regulated. The most significantly enriched GO-BP term was revealed to be mitotic cell cycle and the most significantly enriched pathway was cell cycle. The intersection analysis showed that most significant DEGs were cyclin B1 (CCNB1) and cyclin B2 (CCNB2). The sensitivities and specificities of CCNB1 and CCNB2 were both high (p<0.0001). Areas under the ROC curve for CCNB1 and CCNB2 were both greater than 0.9 (p<0.0001). Conclusions: CCNB1 and CCNB2, which were involved in cell cycle, played significant roles in the progression and development of GC and these genes may be potential biomarkers for diagnosis and prognosis of GC.

Identification of Functional and In silico Positional Differentially Expressed Genes in the Livers of High- and Low-marbled Hanwoo Steers

  • Lee, Seung-Hwan;Park, Eung-Woo;Cho, Yong-Min;Yoon, Duhak;Park, Jun-Hyung;Hong, Seong-Koo;Im, Seok-Ki;Thompson, J.M.;Oh, Sung-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권9호
    • /
    • pp.1334-1341
    • /
    • 2007
  • This study identified hepatic differentially expressed genes (DEGs) affecting the marbling of muscle. Most dietary nutrients bypass the liver and produce plasma lipoproteins. These plasma lipoproteins transport free fatty acids to the target tissue, adipose tissue and muscle. We examined hepatic genes differentially expressed in a differential-display reverse transcription-polymerase chain reaction (ddRT-PCR) analysis comparing high- and low-marbled Hanwoo steers. Using 60 arbitrary primers, we found 13 candidate genes that were upregulated and five candidate genes that were downregulated in the livers of high-marbled Hanwoo steers compared to low-marbled individuals. A BLAST search for the 18 DEGs revealed that 14 were well characterized, while four were not annotated. We examined four DEGs: ATP synthase F0, complement component CD, insulin-like growth factor binding protein-3 (IGFBP3) and phosphatidylethanolamine binding protein (PEBP). Of these, only two genes (complement component CD and IGFBP3) were differentially expressed at p<0.05 between the livers of high- and low-marbled individuals. The mean mRNA levels of the PEBP and ATP synthase F0 genes did not differ significantly between the livers of high- and low-marbled individuals. Moreover, these DEGs showed very high inter-individual variation in expression. These informative DEGs were assigned to the bovine chromosome in a BLAST search of MS marker subsets and the bovine genome sequence. Genes related to energy metabolism (ATP synthase F0, ketohexokinase, electron-transfer flavoprotein-ubiquinone oxidoreductase and NADH hydrogenase) were assigned to BTA 1, 11, 17, and 22, respectively. Syntaxin, IGFBP3, decorin, the bax inhibitor gene and the PEBP gene were assigned to BTA 3, 4, 5, 5, and 17, respectively. In this study, the in silico physical maps provided information on the specific location of candidate genes associated with economic traits in cattle.

Identifying Differentially Expressed Genes and Small Molecule Drugs for Prostate Cancer by a Bioinformatics Strategy

  • Li, Jian;Xu, Ya-Hong;Lu, Yi;Ma, Xiao-Ping;Chen, Ping;Luo, Shun-Wen;Jia, Zhi-Gang;Liu, Yang;Guo, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5281-5286
    • /
    • 2013
  • Purpose: Prostate cancer caused by the abnormal disorderly growth of prostatic acinar cells is the most prevalent cancer of men in western countries. We aimed to screen out differentially expressed genes (DEGs) and explore small molecule drugs for prostate cancer. Materials and Methods: The GSE3824 gene expression profile of prostate cancer was downloaded from Gene Expression Omnibus database which including 21 normal samples and 18 prostate cancer cells. The DEGs were identified by Limma package in R language and gene ontology and pathway enrichment analyses were performed. In addition, potential regulatory microRNAs and the target sites of the transcription factors were screened out based on the molecular signature database. In addition, the DEGs were mapped to the connectivity map database to identify potential small molecule drugs. Results: A total of 6,588 genes were filtered as DEGs between normal and prostate cancer samples. Examples such as ITGB6, ITGB3, ITGAV and ITGA2 may induce prostate cancer through actions on the focal adhesion pathway. Furthermore, the transcription factor, SP1, and its target genes ARHGAP26 and USF1 were identified. The most significant microRNA, MIR-506, was screened and found to regulate genes including ITGB1 and ITGB3. Additionally, small molecules MS-275, 8-azaguanine and pyrvinium were discovered to have the potential to repair the disordered metabolic pathways, abd furthermore to remedy prostate cancer. Conclusions: The results of our analysis bear on the mechanism of prostate cancer and allow screening for small molecular drugs for this cancer. The findings have the potential for future use in the clinic for treatment of prostate cancer.

Identifying Differentially Expressed Genes and Screening Small Molecule Drugs for Lapatinib-resistance of Breast Cancer by a Bioinformatics Strategy

  • Zhuo, Wen-Lei;Zhang, Liang;Xie, Qi-Chao;Zhu, Bo;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10847-10853
    • /
    • 2015
  • Background: Lapatinib, a dual tyrosine kinase inhibitor that interrupts the epidermal growth factor receptor (EGFR) and HER2/neu pathways, has been indicated to have significant efficacy in treating HER2-positive breast cancer. However, acquired drug resistance has become a very serious clinical problem that hampers the use of this agent. In this study, we aimed to screen small molecule drugs that might reverse lapatinib-resistance of breast cancer by exploring differentially expressed genes (DEGs) via a bioinformatics method. Materials and Methods: We downloaded the gene expression profile of BT474-J4 (acquired lapatinib-resistant) and BT474 (lapatinib-sensitive) cell lines from the Gene Expression Omnibus (GEO) database and selected differentially expressed genes (DEGs) using dChip software. Then, gene ontology and pathway enrichment analyses were performed with the DAVID database. Finally, a connectivity map was utilized for predicting potential chemicals that reverse lapatinib-resistance. Results: A total of 1, 657 DEGs were obtained. These DEGs were enriched in 10 pathways, including cell cycling, regulation of actin cytoskeleton and focal adhesion associate examples. In addition, several small molecules were screened as the potential therapeutic agents capable of overcoming lapatinib-resistance. Conclusions: The results of our analysis provided a novel strategy for investigating the mechanism of lapatinib-resistance and identifying potential small molecule drugs for breast cancer treatment.

Exploration of Molecular Mechanisms of Diffuse Large B-cell Lymphoma Development Using a Microarray

  • Zhang, Zong-Xin;Shen, Cui-Fen;Zou, Wei-Hua;Shou, Li-Hong;Zhang, Hui-Ying;Jin, Wen-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권3호
    • /
    • pp.1731-1735
    • /
    • 2013
  • Objective: We aimed to identify key genes, pathways and function modules in the development of diffuse large B-cell lymphoma (DLBCL) with microarray data and interaction network analysis. Methods: Microarray data sets for 7 DLBCL samples and 7 normal controls was downloaded from the Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) were identified with Student's t-test. KEGG functional enrichment analysis was performed to uncover their biological functions. Three global networks were established for immune system, signaling molecules and interactions and cancer genes. The DEGs were compared with the networks to observe their distributions and determine important key genes, pathways and modules. Results: A total of 945 DEGs were obtained, 272 up-regulated and 673 down-regulated. KEGG analysis revealed that two groups of pathways were significantly enriched: immune function and signaling molecules and interactions. Following interaction network analysis further confirmed the association of DEGs in immune system, signaling molecules and interactions and cancer genes. Conclusions: Our study could systemically characterize gene expression changes in DLBCL with microarray technology. A range of key genes, pathways and function modules were revealed. Utility in diagnosis and treatment may be expected with further focused research.

Analysis of Differentially Expressed Genes in Cloned Bovine Placenta

  • Park, Hee-Ja;Ko, Yeoung-Gyu;Hwang, Seong-Soo;Yang, Byoung-Chul;Seong, Hwan-Hoo;Oh, Seok-Doo;Hwang, Sue-Yun;Min, Kwan-Sik;Yoon, Jong-Taek
    • Reproductive and Developmental Biology
    • /
    • 제33권1호
    • /
    • pp.41-48
    • /
    • 2009
  • Placenta is the main nutrition source for the fetus during pregnancy. Thus, it has a pivotal function in the pregnant process. Many functions of the placenta have been elucidated. An abnormal placenta is associated with a high rate of pregnancy failure in somatic cloned bovine. Differentially expressed genes (DEGs) were examined in a comparison between normal and cloned bovine placenta using annealing control primer (ACP)-based GeneFishing PCR. Using 120 ACPs, nearly 80 genes were identified and the fragments of 42 DEGs were sequenced. 38 of these genes were known genes and four were unknown. To determine the DEGs result, six target clones expressing on one-side of a normal and a clone placenta were selected. Through an analysis of the target genes using the real-time PCR, the expressing pattern was found to be somewhat different from the DEGs. Additionally, several genes appeared with the same expression pattern. Taken together, this suggests that the target genes would be essential for research into what influences the placental formative mechanisms during fetal development.