• Title/Summary/Keyword: Differentially expressed

Search Result 903, Processing Time 0.023 seconds

Transcriptome Profiling of Kidney Tissue from FGS/kist Mice, the Korean Animal Model of Focal Segmental Glomerulosclerosis (국소성 분절성 사구체 신병증의 동물 모델 (FGS/kist 생쥐) 신 조직의 유전자 발현 양상)

  • Kang, Hee-Gyung;Lee, Byong-Sop;Lee, Chul-Ho;Ha, Il-Soo;Cheong, Hae-Il;Choi, Yong
    • Childhood Kidney Diseases
    • /
    • v.15 no.1
    • /
    • pp.38-48
    • /
    • 2011
  • Purpose: Focal segmental glomerulosclerosis (FSGS) is the most common glomerulopathy causing pediatric renal failure. Since specific treatment targeting the etiology and pathophysiology of primary FSGS is yet elusive, the authors explored the pathophysiology of FSGS by transcriptome analysis of the disease using an animal model. Methods: FGS/kist strain, a mouse model of primary FSGS, and RFM/kist strain, as control and the parent strain of FGS/kist, were used. Kidney tissues were harvested and isolated renal cortex was used to extract mRNA, which was run on AB 1700 mouse microarray chip after reverse transcription to get the transcriptome profile. Results: Sixty two genes were differentially expressed in FGS/kist kidney tissue compared to the control. Those genes were related to cell cycle/cell death, immune reaction, and lipid metabolism/vasculopathy, and the key molecules of their networks were TNF, IL-6/4, IFN${\gamma}$, TP53, and PPAR${\gamma}$. Conclusion: This study confirmed that renal cell death, immune system activation with subsequent fibrosis, and lipid metabolism-related early vasculopathy were involved in the pathophysiology of FSGS. In addition, the relevance of methodology used in this study, namely transcriptome profiling, and Korean animal model of FGS/kist was validated. Further study would reveal novel pathophysiology of FSGS for new therapeutic targets.

A Comparative Study of Parametric Methods for Significant Gene Set Identification Depending on Various Expression Metrics (유전자 발현 메트릭에 기반한 모수적 방식의 유의 유전자 집합 검출 비교 연구)

  • Kim, Jae-Young;Shin, Mi-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Recently lots of attention has been paid to gene set analysis for identifying differentially expressed gene-sets between two sample groups. Unlike earlier approaches, the gene set analysis enables us to find significant gene-sets along with their functional characteristics. For this reason, various novel approaches have been suggested lately for gene set analysis. As one of such, PAGE is a parametric approach that employs average difference (AD) as an expression metric to quantify expression differences between two sample groups and assumes that the distribution of gene scores is normal. This approach is preferred to non-parametric approach because of more effective performance. However, the metric AD does not reflect either gene expression intensities or variances over samples in calculating gene scores. Thus, in this paper, we investigate the usefulness of several other expression metrics for parametric gene-set analysis, which consider actual expression intensities of genes or their expression variances over samples. For this purpose, we examined three expression metrics, WAD (weighted average difference), FC (Fisher's criterion), and Abs_SNR (Absolute value of signal-to-noise ratio) for parametric gene set analysis and evaluated their experimental results.

Function of Global Regulator CodY in Bacillus thuringiensis BMB171 by Comparative Proteomic Analysis

  • Qi, Mingxia;Mei, Fei;Wang, Hui;Sun, Ming;Wang, Gejiao;Yu, Ziniu;Je, Yeonho;Li, Mingshun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • CodY is a highly conserved protein in low G+C gram-positive bacteria that regulates genes involved in sporulation and stationary-phase adaptation. Bacillus thuringiensis is a grampositive bacterium that forms spores and parasporal crystals during the stationary phase. To our knowledge, the regulatory mechanism of CodY in B. thuringiensis is unknown. To study the function of CodY protein in B. thuringiensis, BMB171codY- was constructed in a BMB171 strain. A shuttle vector containing the ORF of cry1Ac10 was transformed into BMB171 and BMB171codY-, named BMB171cry1Ac and BMB171codY-cry1Ac, respectively. Some morphological and physiological changes of codY mutant BMB171codY-cry1Ac were observed. A comparative proteomic analysis was conducted for both BMB171codY-cry1Ac and BMB171cry1Ac through two-dimensional gel electrophoresis and MALDI-TOF-MS/MS analysis. The results showed that the proteins regulated by CodY are involved in microbial metabolism, including branched-chain amino acid metabolism, carbohydrate metabolism, fatty acid metabolism, and energy metabolism. Furthermore, we found CodY to be involved in sporulation, biosynthesis of poly-β-hydroxybutyrate, growth, genetic competence, and translation. According to the analysis of differentially expressed proteins, and physiological characterization of the codY mutant, we performed bacterial one-hybrid and electrophoretic mobility shift assay experiments and confirmed the direct regulation of genes by CodY, specifically those involved in metabolism of branched-chain amino acids, ribosomal recycling factor FRR, and the late competence protein ComER. Our data establish the foundation for in-depth study of the regulation of CodY in B. thuringiensis, and also offer a potential biocatalyst for functions of CodY in other bacteria.

ANALYSES OF THE EXPRESSION PROFILES OF GENES RESPONSIBLE FOR THE GROWTH OF OSTEOBLAST UPON VELVET ANTLERS TREATMENT (녹용이 조골세포(造骨細胞) 성장에 미치는 유전자 발현 profile 분석에 대한 연구)

  • Lee, Jong-Woo;Kim, Doeg-Kon
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.39-74
    • /
    • 2002
  • Recently, increased attention has been paid to the growth of the height of children and adolescents. To accelerate growth, velvet antlers are typically used in Oriental medicine. The present study investigated the effects of velvet antlers of velvet antlers on bone growth using the cell line of Human Osteosarcoma (Hos), derived from the bone-generating cells essential to bone growth. In order to give certain stress to this Hos, the medium contained 1% FBS was used for culturing for Hos cell instead of 10% in control. In this condition of which the proliferation had been significantly decreased, the ethanol extract of upper part of velvet antlers was added, As a result, the cells proliferation rate was significantly increased. Using Oligonucleotide DNA microarray, comparison and analyses were done to see what kind of specific genes would be differentially expressed. The result showed that as opposed to the control group, the stressed group indicated a decrease in the expressions of 6 kinds of genes such as, Id1, retinoid X receptor(RXRB) and 14-3-3 epsilon, etc. The velvet antler treated group, as opposed to the control group, showed a decreased in the expressions of 8 kinds of genes such as Id1, etc. and an increase in the expressions of 24 kinds of genes. The number of genes that showed differences in the velvet antler treated group compared with the stressed group was 7 the expression of 1 kind of gene was decreased, and the expressions of 6 kinds of genes were increased. Considering the mechanism by which velvet antlers affected the growth of osteoblast through reviewing the functions of these genes, the following results were attained. The constraint in the proliferation of Hos cells resulting from the medium contained 1% FBS seems to be caused by three important factors: 1) the decrease of the expression of 14-3-3 epsilon involved in the signal transduction and metabolism of growth, 2) the decrease of the expression of Id1 gene involved in the metabolism of bone formation, and 3) the decreased of expression of RXRB gene involved in the metabolism of retinoci acid. It is suggested that the improvement of the cell proliferating effects by velvet antler treatment, in stressed condition si mediated by increment of 6 genes particularly 14-3-3 epsilon, RXRB, and IGF2, with are the crucial factors for the cell growth and differentiation, metabolism of retinoic acid and osteoblast proliferation, respectively.

  • PDF

Development of high tryptophan GM rice and its transcriptome analysis (고 함량 트립토판 생산 GM 벼 개발 및 전사체 분석)

  • Jung, Yu Jin;Nogoy, Franz Marielle;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.186-195
    • /
    • 2015
  • Anthranilate synthase (AS) is a key enzyme in the biosynthesis of tryptophan (Trp), which is the precursor of bioactive metabolites like indole-3-acetic acid and other indole alkaloids. Alpha anthranilate synthase 2 (OsASA2) plays a critical role in the feedback inhibition of tryptophan biosynthesis. In this study, two vectors with single (F124V) and double (S126F/L530D) point mutations of the OsASA2 gene for feedback-insensitive ${\alpha}$ subunit of rice anthranilate synthase were constructed and transformed into wildtype Dongjinbyeo by Agrobacterium-mediated transformation. Transgenic single and double mutant lines were selected as a single copy using TaqMan PCR utilized nos gene probe. To select intergenic lines, the flanking sequence of RB or LB was digested with a BfaI enzyme. Four intergenic lines were selected using a flanking sequence tagged (FST) analysis. Expression in rice (Oryza sativa L.) of the transgenes resulted in the accumulation of tryptophan (Trp), indole-3-acetonitrile (IAN), and indole-3-acetic acid (IAA) in leaves and tryptophan content as a free amino acid in seeds also increased up to 30 times relative to the wildtype. Two homozygous event lines, S-TG1 and D-TG1, were selected for characterization of agronomic traits and metabolite profiling of seeds. Differentially expressed genes (DEGs), related to ion transfer and nutrient supply, were upregulated and DEGs related to co-enzymes that work as functional genes were down regulated. These results suggest that two homozygous event lines may prove effective for the breeding of crops with an increased level of free tryptophan content.

Differences in Gene Expression Profiles Reflecting Differences in Drug Sensitivity to Acetaminophen in Normal and Transformed Hepatic Cell Lines In vitro

  • Jeong, Youn-Kyoung;Kang, Jin-Seok;Kim, Joo-Whan;Suh, Soo-Kyung;Lee, Michael;Kim, Seung-Hee;Lee, Sang-Kook;Park, Sue-Nie
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.32-43
    • /
    • 2009
  • Acetaminophen (APAP) overdose is known to cause severe hepatotoxicity mainly through the depletion of glutathione. In this study, we compared the cytotoxic effects of APAP on both a normal murine hepatic cell line, BNL CL.2, and its SV40-transformed cell line, BNL SV A.8. Gene expression profiles for APAP-treated cells were also obtained using microarray and analyzed to identify differences in genes or profiles that may explain the differences of susceptibility to APAP in these cell lines. These two cell lines exhibited different susceptibilities to APAP (0-$5,000{\mu}M$); BNL SV A.8 cells were more susceptible to APAP treatment compared to BNL CL.2 cells. A dose of $625{\mu}M$ APAP, which produced significant differences in cytotoxicity in these cell lines, was tested. Microarray analysis was performed to identify significant differentially expressed genes (DEGs) irrespective of APAP treatment. Genes up-regulated in BNL SV A.8 cells were associated with immune response, defense response, and apoptosis, while down-regulated genes were associated with catalytic activity, cell adhesion and the cytochrome P450 family. Consistent with the cytotoxicity data, no significant DEGs were found in BNL CL.2 cells after treatment with $625{\mu}M$ APAP, while cell cycle arrest and apoptosis-related genes were up-regulated in BNL SV A.8 cells. Based on the significant fold-changes in their expression, a genes were selected and their expressions were confirmed by quantitative real-time RT-PCR; there was a high correlation between them. These results suggest that gene expression profiles may provide a useful method for evaluating drug sensitivity of cell lines and eliciting the underlying molecular mechanism. We further compared the genes identified from our current in vitro studies to the genes previously identified in our lab as regulated by APAP in both C57BL/6 and ICR mice in vivo. We found that a few genes are regulated in a similar pattern both in vivo and in vitro. These genes might be useful to develop as in vitro biomarkers for predicting in vivo hepatotoxicity. Based on our results, we suggest that gene expression profiles may provide useful information for elucidating the underlying molecular mechanisms of drug susceptibility and for evaluating drug sensitivity in vitro for extrapolation to in vivo.

Analysis of p53-Dependency of Differentially Expressed Genes by Capsaicin in Human Colorectal Cancer Cell (인간 대장암 세포주에서 capsaicin 처리에 의한 차별적인 유전자 발현의 p53 의존성 분석)

  • Kim, Hyo-Eun;Jang, Min-Jeong;Lim, Seung-Hyun;Kim, Hyo-Rim;Kim, Soon-Young;Lee, Gun-Joo;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.213-218
    • /
    • 2010
  • In the present study, we investigated anti-proliferative activities of capsaicin and gene expression changes in response to capsaicin treatment in human colorectal HCT116 cells. The results showed that capsaicin decreased cell viabilities in a dose dependent manner and induced global gene expression changes. We found that 103 genes were up-regulated more than twofold, whereas 153 genes were down-regulated more than twofold by $100\;{\mu}M$ capsaicin treatment. Among the up-regulated genes, we selected 4 genes (NAG-1, DDIT3, GADD45A and PCK2) and performed RT-PCR to confirm the microarray data. We found that $100\;{\mu}M$ of capsaicin increased tumor suppressor p53 gene expression. In addition, the results showed that NAG-1, DDIT3 and GADD45A expressions were not dependent on p53 presence, whereas PCK2 expression. The results of this study may help to increase our understandings of the molecular mechanism of anti-proliferative activity mediated by capsaicin in human colorectal cancer cells.

Molecular Signatures of Sinus Node Dysfunction Induce Structural Remodeling in the Right Atrial Tissue

  • Roh, Seung-Young;Kim, Ji Yeon;Cha, Hyo Kyeong;Lim, Hye Young;Park, Youngran;Lee, Kwang-No;Shim, Jaemin;Choi, Jong-Il;Kim, Young-Hoon;Son, Gi Hoon
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.408-418
    • /
    • 2020
  • The sinus node (SN) is located at the apex of the cardiac conduction system, and SN dysfunction (SND)-characterized by electrical remodeling-is generally attributed to idiopathic fibrosis or ischemic injuries in the SN. SND is associated with increased risk of cardiovascular disorders, including syncope, heart failure, and atrial arrhythmias, particularly atrial fibrillation. One of the histological SND hallmarks is degenerative atrial remodeling that is associated with conduction abnormalities and increased right atrial refractoriness. Although SND is frequently accompanied by increased fibrosis in the right atrium (RA), its molecular basis still remains elusive. Therefore, we investigated whether SND can induce significant molecular changes that account for the structural remodeling of RA. Towards this, we employed a rabbit model of experimental SND, and then compared the genome-wide RNA expression profiles in RA between SND-induced rabbits and sham-operated controls to identify the differentially expressed transcripts. The accompanying gene enrichment analysis revealed extensive pro-fibrotic changes within 7 days after the SN ablation, including activation of transforming growth factor-β (TGF-β) signaling and alterations in the levels of extracellular matrix components and their regulators. Importantly, our findings suggest that periostin, a matricellular factor that regulates the development of cardiac tissue, might play a key role in mediating TGF-β-signaling-induced aberrant atrial remodeling. In conclusion, the present study provides valuable information regarding the molecular signatures underlying SND-induced atrial remodeling, and indicates that periostin can be potentially used in the diagnosis of fibroproliferative cardiac dysfunctions.

Five miRNAs as Novel Diagnostic Biomarker Candidates for Primary Nasopharyngeal Carcinoma

  • Tang, Jin-Feng;Yu, Zhong-Hua;Liu, Tie;Lin, Zi-Ying;Wang, Ya-Hong;Yang, La-Wei;He, Hui-Juan;Cao, Jun;Huang, Hai-Li;Liu, Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7575-7581
    • /
    • 2014
  • MicroRNAs (miRNAs) play an essential role in the development and progression of nasopharyngeal carcinomas (NPC). Despite advances in the field of cancer molecular biology and biomarker discovery, the development of clinically validated biomarkers for primary NPC has remained elusive. In this study, we investigated the expression and clinical significance of miRNAs as novel primary NPC diagnostic biomarkers. We used an array containing 2, 500 miRNAs to identify 22 significant miRNAs, and these candidate miRNAs were validated using 67 fresh NPC and 25 normal control tissues via quantitative real-time PCR (qRT-PCR). Expression and correlation analyses were performed with various statistical approaches, in addition to logistic regression and receiver operating characteristic curve analyses to evaluate diagnostic efficacy. qRT-PCR revealed five differentially expressed miRNAs (miR-93-5p, miR-135b-5p, miR-205-5p and miR-183-5p) in NPC tissue samples relative to control samples (p<0.05), with miR-135b-5p and miR-205-5p being of significant diagnostic value (p<0.01). Moreover, comparison of NPC patient clinicopathologic data revealed a negative correlation between miR-93-5p and miR-183-5p expression levels and lymph node status (p<0.05). These findings display an altered expression of many miRNAs in NPC tissues, thus providing information pertinent to pathophysiological and diagnostic research. Ultimately, miR-135b-5p and miR-205-5p may be implicated as novel NPC candidate biomarkers, while miR-93-5p, miR-650 and miR-183-5p may find application as relevant clinical pathology and diagnostic candidate biomarkers.

Circulating miR-195 as a Therapeutic Biomarker in Turkish Breast Cancer Patients

  • Cecener, Gulsah;Ak, Secil;Eskiler, Gamze Guney;Demirdogen, Elif;Erturk, Elif;Gokgoz, Sehsuvar;Polatkan, Volkan;Egeli, Unal;Tunca, Berrin;Tezcan, Gulcin;Topal, Ugur;Tolunay, Sahsine;Tasdelen, Ismet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4241-4246
    • /
    • 2016
  • Background: Dysregulation of miRNA expression may be used as a biomarker for specific tumours because it may contribute to development of cancer. Circulating miRNA profiles have been highlighted for their potential as predictive markers in heterogeneous diseases such as breast cancer. In the literature, there is evidence that miR-195 levels are differentially expressed pre- and post-operative periods in breast cancer patients. At the same time, miRNA expression levels may vary because of ethnic origins. This study aimed to determine expression levels and potential roles of miR-195 in Turkish breast cancer patients. Materials and Methods: The expression patterns of miR-195 were initially examined in breast cancer tissues (luminal A and B type) (n=96). Subsequently, blood samples were prospectively collected from preoperative and postoperative Turkish breast cancer patients and disease free controls. Total RNA was isolated, and the expression level of miR-195 was quantified by real-time PCR. Results: We found that miR-195 level was altered in Turkish breast cancer patients, with down-regulation evident in breast cancer tissues compared to normal adjacent specimens. Furthermore, circulating levels of miR-195 was significantly decreased in post-operative blood samples compared with pre-operative levels (p=0.01 and <0.05). However, miR-195 was significantly increased in pre-operative blood samples of the luminal B type (p=0.04 and <0.05). Conclusions: This study represents the first report of a miR-195 expression profile in Turkish breast cancer patients. Our data suggests that miR-195 levels might be a clinically useful biomarker in the earliest stage of Turkish breast cancer patients.