Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.2.213

Analysis of p53-Dependency of Differentially Expressed Genes by Capsaicin in Human Colorectal Cancer Cell  

Kim, Hyo-Eun (Department of Biological Sciences, Andong National University)
Jang, Min-Jeong (Department of Biological Sciences, Andong National University)
Lim, Seung-Hyun (Department of Biological Sciences, Andong National University)
Kim, Hyo-Rim (Department of Biological Sciences, Andong National University)
Kim, Soon-Young (Department of Biological Sciences, Andong National University)
Lee, Gun-Joo (Department of Biological Sciences, Andong National University)
Kim, Jong-Sik (Department of Biological Sciences, Andong National University)
Publication Information
Journal of Life Science / v.20, no.2, 2010 , pp. 213-218 More about this Journal
Abstract
In the present study, we investigated anti-proliferative activities of capsaicin and gene expression changes in response to capsaicin treatment in human colorectal HCT116 cells. The results showed that capsaicin decreased cell viabilities in a dose dependent manner and induced global gene expression changes. We found that 103 genes were up-regulated more than twofold, whereas 153 genes were down-regulated more than twofold by $100\;{\mu}M$ capsaicin treatment. Among the up-regulated genes, we selected 4 genes (NAG-1, DDIT3, GADD45A and PCK2) and performed RT-PCR to confirm the microarray data. We found that $100\;{\mu}M$ of capsaicin increased tumor suppressor p53 gene expression. In addition, the results showed that NAG-1, DDIT3 and GADD45A expressions were not dependent on p53 presence, whereas PCK2 expression. The results of this study may help to increase our understandings of the molecular mechanism of anti-proliferative activity mediated by capsaicin in human colorectal cancer cells.
Keywords
Capsaicin; anti-proliferative activity; gene expression; p53; human colorectal cancer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bates, S. and K. H. Vousden. 1996. p53 in signaling checkpoint arrest or apoptosis. Curr. Opin. Genet. Dev. 6, 12-18.   DOI
2 Biro, T., G. Acs, P. Acs, S. Modarres, and P. M. Blumberg. 1997. Recent advances in understanding of vanilloid receptors: a therapeutic target for treatment of pain and inflammation in skin. J. Investig. Dermatol. Symp. Proc. 2, 56-60.   DOI   ScienceOn
3 Chou, C. C., Y. C. Wu, Y. F. Wang, M. J. Chou, S. J. Kuo, and D. R. Chen. 2009. Capsaicin-induced apoptosis in human breast cancer MCF-7 cells through caspase-independent pathway. Oncol. Rep. 21, 665-671.
4 Sanchez, A. M., J. Martinez-Botas, S. Malagarie-Cazenave, N. Olea, D. Vara, M. A. Lasuncion, and I. Diaz-Laviada. 2008. Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a mi croarray study. Biochem. Biophys. Res. Commun. 372, 785-791.   DOI
5 Surh, Y. J., K. S. Chun, H. H. Cha, S. S. Han, Y. S. Keom, K. K. Park, and S. S. Lee. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480, 243-268.   DOI   ScienceOn
6 Surh, Y. J. and L. R. Ferguson. 2003. Dietary and medicinal antimutagens and anticarciongens: molecular mechanism and chemopreventive potential-highlights of a symposium. Mutat. Res. 523-524, 1-8.   DOI
7 Surh, Y. J. 2003. Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer 3, 768-780.   DOI
8 Szallasi, A. and P. M. Blumberg. 1999. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol. Rev. 51, 159-212.
9 Thomas, K. C., A. S. Sabnis, M. E. Johansen, D. L. Lanza, P. J. Moos, G. S. Yost, and C. A. Reilly. 2007. Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells. J. Pharmacol. Exp. Ther. 321, 830-838.   DOI
10 Vogelstein, B. and K. W. Kinzler. 1992. p53 function and dysfunction. Cell 70, 523-526.   DOI
11 Watabe, M., K. Hishicawa, A. Takyanaqi, N. Shimizu, and T. Nakaki. 2004. Caffeic acid phenethyl ester induces apoptosis by inhibition of NF-kappaB and activation of Fas in human breast cancer MCF-7 cell. J. Biol. Chem. 279, 6017-6026.   DOI
12 Wilson, L. C., S. J. Baek, A. Call, and T. E. Eling. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer 105, 747-753.   DOI
13 Kim, J. S., S. J. Baek, T. Sali, and T. E. Eling. 2005. The conventional nonsteroidal anti-inflammatory drug sulindac sulfide arrests ovarian cancer cell growth via the expression of NAG-1/MIC-1/GDF-15. Mol. Cancer Ther. 4, 487-493.
14 Lee, J. S., J. S. Chang, J. Y. Lee, and J. A. Kim. 2004. Capsaicin-induced apoptosis and reduced released of reactive oxygen species in MBT-2 murine bladder tumor cells. Arch. Pharm. Res. 27, 1147-1153.   DOI
15 Lee, S. H., J. S. Kim, K. Yamaguchi, T. E. Eling, and S. J. Baek. 2005. Indole-3-carbinol and 3,3'-diindolylmethane induce expression of NAG-1 in a p53-independent manner. Biochem. Biophys. Res. Commun. 328, 63-69.   DOI
16 Lee, Y. S., Y. S. Kang, J. S. Lee, S. Nicolova, and J. A. Kim. 2004. Involvement of NADPH oxidase-mediated generation of reactive oxygen species in the apoptotic cell death by capsaicin in HepG2 human hepatoma cells. Free Radic. Res. 38, 405-412.   DOI
17 Levine, A. J. p53, the cellular gatekeeper for growth and division. 1997. Cell 88, 323-331.   DOI
18 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
19 Mori, A., S. Lehmann, J. O'Kelly, T. Kumagai, J. C. Desmond, M. Pervan, W. H. McBride, M. Kizaki, and H. P. Koeffler. 2006. Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res. 66, 3222-3229.   DOI
20 Malagarie-Cazenave, S, N. Olea-Herrero, D. Vara, and I. Diaz-Laviada. 2009. Capsaicin, a component of red peppers, induces expression of androgen receptor via PI3K and MAPK pathways in prostate LNCaP cells. FEBS Lett. 583, 141-147.   DOI
21 Cordell, G. A. and O. E. Araujo. 1993. Capsaicin: identification, nomenclature, and pharmacotherapy. Ann. Pharmacother. 27, 330-336.
22 Ding, H., W. Duan, W. G. Zhu, R. Ju, K. Srinivasan, G. A. Otterson, and M. A. Villalona-Calero. 2003. p21 response to DNA damage induced by genistein and etoposide in human lung cancer cells. Biochem. Biophys. Res. Commun. 305, 950-956.   DOI
23 el-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825.   DOI
24 Gupta, S., N. Ahmad, A. L. Nieminen, and H. Mukhtar. 2000. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgeninsensitive human prostate carcinoma cells. Toxicol. Appl. Pharmacol. 164, 82-90.   DOI
25 Hail, N. Jr and R. Lotan. 2002. Examining the role of mitochondrial respiration in vanilloid-induced apoptosis. J. Natl. Cancer Inst. 94, 1281-1292.   DOI
26 Huang, C., W. Y. Ma, A. Goranson, and Z. Dong. 1999. Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. Carcinogenesis 20, 237-242.   DOI
27 Baek, S. J., L. C. Wilson, and T. E. Eling. 2002. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis 23, 425-434.   DOI
28 Joo, J. J. 1999. Body-fat suppressive effects of capsaicin through $\beta$-adrenergic stimulation in rats fed a high-fat diet. The Korean Journal of Nutrition 32, 533-539.   과학기술학회마을
29 Kim, C. S., W. H. Pack, J. Y. Park, J. H. Kang, M. O. Kim, T. Kawada, H. Yoo, I. S. Han, and R. Yu. 2004. Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT-29 human colon cancer cells. J. Med. Food 7, 267-273.   DOI
30 Baek, S. J., K. S. Kim, J. B. Nixon, L. C. Wilson, and T. E. Eling. 2001. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol. Pharmacol. 59, 901-908.