• Title/Summary/Keyword: Differentially Expressed Proteins

Search Result 247, Processing Time 0.032 seconds

Proteome Analysis for 3T3-L1 Adipocyte Differentiation

  • Rahman, Atiar;Kumar, Suresh G.;Lee, Sung-Hak;Hyun, Sun-Hwang;Kim, Hyun-Ah;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1895-1902
    • /
    • 2008
  • Adipose tissue is an important endocrine organ involved in the control of whole body energy homeostasis and insulin sensitivity. Considering the increased incidence of obesity and obesity-related disorders, including diabetes, it is important to understand thoroughly the process of adipocyte differentiation and its control. Therefore, we performed a differential proteome mapping strategy using two-dimensional gel electrophoresis combined with peptide mass fingerprinting to identify intracellular proteins that are differentially expressed during adipose conversion of 3T3-L1 pre-adipocytes in response to an adipogenic cocktail. In the current study, we identified 46 differentially expressed proteins, 6 of which have not been addressed previously in 3T3-L1 cell differentiation. Notably, we found that phosphoribosyl pyrophosphate synthetase (PRPS), a regulator of cell proliferation, was preferentially expressed in pre-adipocytes than in fully differentiated adipocytes. In conclusion, our results provide valuable information for further understanding of the adipogenic process.

Comparative Analysis of Muscle Proteome from Porcine White and Red Muscles by Two-dimensional Electrophoresis (이차원전기영동법을 이용한 white muscle과 red muscle간의 단백질 발현양상의 비교분석)

  • Kim, N.K.;Joh, J.H.;Chu, K.S.;Park, H.R.;Park, B.Y.;Kim, O.H.;Lee, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.731-738
    • /
    • 2003
  • The technique known as proteomics is useful for characterizing the protein expression pattern of a particular tissue or cell type as well as quantitatively identifying differences in the levels of individual proteins. In present study, we carried out the comparative expression patterns of white and red muscles. We used the two-dimensional electrophoresis(2-DE) for analyzing the protein expression. Proteins isolated from porcine white and red muscles were separated by 12% poly-acrylamide gel and then were detected by coomassie blue and silver staining. More than 600 protein spots were detected on each 2-DE gel. By visual analysis of the stained gel, five proteins were identified to be differentially expressed in the white vs red muscle. By database searching based on the molecular weights and pI(isoelectric point) of the five proteins, three of them were found to be most close to troponin I, T and myoglobin. However, further researche is needed for identification and functional analysis of the unidentified proteins. In conclusion, we found five proteins, which are differentially expressed in the white vs red muscle. The functional analysis of the differentially expressed proteins will provide valuable information on biochemical characteristics of the muscle type.

Comparative analysis of fat and muscle proteins in fenofibratefed type II diabetic OLETF rats: the fenofibrate-dependent expression of PEBP or C11orf59 protein

  • Hahm, Jong-Ryeal;Ahn, Jin-Sook;Noh, Hae-Sook;Baek, Seon-Mi;Ha, Ji-Hye;Jung, Tae-Sik;An, Yong-Jun;Kim, Duk-Kyu;Kim, Deok-Ryong
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.337-343
    • /
    • 2010
  • Fenofibrate, an agonist of $PPAR{\alpha}$, plays an important role in activating many proteins catalyzing lipid metabolism, and it also has a considerable effect on improvement of insulin sensitivity in the diabetic condition. To investigate fenofibrate-dependent expression of peripheral tissue proteins in diabetes, we analyzed whole muscle or fat proteins of fenofibrate-fed OLETF rats, an animal model of type II diabetes, using 2-dimensional gel electrophoresis. We found that many proteins were specifically expressed in a fenofibrate-dependent manner in these diabetic rats. In particular, a functionally unknown C11orf59 protein was differentially expressed in the muscle tissues (about 5-fold increase) in fenofibrate-fed OLETF rats as compared to control rats. Additionally, the signal proteins phosphatidylethanolamine binding protein and IkB interacting protein were differentially regulated in the fenofibrate-treated adipose tissues. We suggest here that these proteins might be involved in controlling lipid or carbohydrate metabolism in diabetes via $PPAR{\alpha}$ activation.

Exosomal Protein Profiles as Novel Biomarkers in Weight Gain After Kidney Transplantation: A Pilot Study

  • Cho, Young-Eun;Lee, Hyangkyu;Kim, Hyungsuk;Yun, Sijung;Cashion, Ann
    • Journal of Korean Biological Nursing Science
    • /
    • v.22 no.2
    • /
    • pp.119-126
    • /
    • 2020
  • Purpose:Weight gain after kidney transplantation is a critical factor that can lead to poor outcomes with cardiovascular complications. Many studies have been conducted to identify predictive markers of future weight changes at the time of transplant. Recently, circulating exosomes and its contents including miRNAs and proteins have attracted attention as potential biomarkers. In this pilot study, we investigated exosomal proteins and weight change after kidney transplant. Methods: Recipients (n = 10) were classified into two groups; weight gainers (n = 5, 9.7 ± 4.4kg) and weight losers (n = 5, -6.4 ± 1.8kg) based on their weight changes at 12-months posttransplant. Based on the exosomal protein profiles obtained by the LC-MS/MS, differentially expressed proteins were identified between the groups. Results: Concentration and the mean size of exosomes significantly increased at 12-months compared to the baseline (p= .009) in the total group. Eleven exosomal proteins were found at the baseline as differentially expressed between the two groups. In the weight gain group, complement proteins including HV169, C3, C4B, and C4A, were significantly upregulated. Conclusion: Our pilot study suggests that exosomal complementary proteins are associated with weight gain after kidney transplantation. Further studies are needed to clarify the role of these exosomal proteins in the underlying mechanisms of weight changes in kidney transplant recipients.

Proteomic Analysis of Erythritol-Producing Yarrowia lipolytica from Glycerol in Response to Osmotic Pressure

  • Yang, Li-Bo;Dai, Xiao-Meng;Zheng, Zhi-Yong;Zhu, Li;Zhan, Xiao-Bei;Lin, Chi-Chung
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1056-1069
    • /
    • 2015
  • Osmotic pressure is a critical factor for erythritol production with osmophilic yeast. Protein expression patterns of an erythritol-producing yeast, Yarrowia lipolytica, were analyzed to identify differentially-expressed proteins in response to osmotic pressure. In order to analyze intracellular protein levels quantitatively, two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Y. lipolytica cultured under low (3.17 osmol/kg) and high (4.21 osmol/kg) osmotic pressures. Proteomic analyses allowed identification of 54 differentially-expressed proteins among the proteins distributed in the range of pI 3-10 and 14.4-97.4 kDa molecular mass between the osmotic stress conditions. Remarkably, the main proteins were involved in the pathway of energy, metabolism, cell rescue, and stress response. The expression of such enzymes related to protein and nucleotide biosynthesis was inhibited drastically, reflecting the growth arrest of Y. lipolytica under hyperosmotic stress. The improvement of erythritol production under high osmotic stress was due to the significant induction of a range of crucial enzymes related to polyols biosynthesis, such as transketolase and triosephosphate isomerase, and the osmotic stress responsive proteins like pyridoxine-4-dehydrogenase and the AKRs family. The polyols biosynthesis was really related to an osmotic response and a protection mechanism against hyperosmotic stress in Y. lipolytica. Additionally, the high osmotic stress could also induce other cell stress responses as with heat shock and oxidation stress responses, and these responsive proteins, such as the HSPs family, catalase T, and superoxide dismutase, also had drastically increased expression levels under hyperosmotic pressure.

A Comparative Study of Protein Profiles in Porcine Fetus Fibroblast Cells with Different Confluence States

  • Han, Rong-Xun;Kim, Hong-Rye;Diao, Yunfei;Kim, Myung-Youn;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.243-248
    • /
    • 2009
  • To examine the differential expression of proteins during the cycling (70~80% confluences) and G0/G1 (full confluences) phases in porcine fetal fibroblast cells, we used a global proteomics approach by 2-D gel electrophoresis (2-DE) and MALDI-TOF-MS. Cycling cell were harvested at approximately 70% to 80% confluent state while cells in G0/G1 phase were recovered after maintenance of a confluent state for 48 hr. Cellular proteins with isoelectric points ranging between 3.0~10.0, were analyzed by 2-DE with 2 replicates of each sample. A total of approximately 700 spots were detected by 2.D gels stained with Coomassie brilliant blue. On comparing the cell samples obtained from the cycling and G0/G1 phases, a total of 13 spots were identified as differentially expressed proteins, of which 8 spots were up-regulated in the cycling cell and 5 were up-regulated in the G0/G1 phase. Differentially expressed proteins included K3 keratin, similar to serine protease 23 precursor, protein disulfide-isomerase A3, microsomal protease ER-60, alpha-actinin-2, and heat-shock protein 90 beta. The identified proteins were grouped on the basis of their basic functions such as molecular binding, catabolic, cell growth, and transcription regulatory proteins. Our results show expression profiles of key proteins in porcine fetal fibroblast cells during different cell cycle status.

Comparison of Proteins Secreted into Extracellular Space of Pathogenic and Non-pathogenic Acanthamoeba castellanii

  • Moon, Eun-Kyung;Choi, Hyun-Seo;Park, So-Min;Kong, Hyun-Hee;Quan, Fu-Shi
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.6
    • /
    • pp.553-558
    • /
    • 2018
  • Pathogenic Acanthamoeba spp. cause granulomatous amoebic encephalitis and keratitis. Acanthamoeba keratitis (AK) is a rare but serious ocular infection that can result in permanent visual impairment or blindness. However, pathogenic factors of AK remain unclear and treatment for AK is arduous. Expression levels of proteins secreted into extracellular space were compared between A. castellanii pathogenic (ACP) and non-pathogenic strains. Two-dimensional polyacrylamide gel electrophoresis revealed 123 differentially expressed proteins, including 34 increased proteins, 7 qualitative increased proteins, 65 decreased proteins, and 17 qualitative decreased proteins in ACP strain. Twenty protein spots with greater than 5-fold increase in ACP strain were analyzed by liquid chromatography triple quadrupole mass spectrometry. These proteins showed similarity each to inosine-uridine preferring nucleoside hydrolase, carboxylesterase, oxygen-dependent choline dehydrogenase, periplasmic-binding protein proteinases and hypothetical proteins. These proteins expressed higher in ACP may provide some information to understand pathogenicity of Acanthamoeba.

Differentially expressed genes in Penaeus monodon hemocytes following infection with yellow head virus

  • Pongsomboon, Siriporn;Tang, Sureerat;Boonda, Suleeporn;Aoki, Takashi;Hirono, Ikuo;Yasuike, Motoshige;Tassanakajon, Anchalee
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.670-677
    • /
    • 2008
  • A cDNA microarray composed of 2,028 different ESTs from two shrimp species, Penaeus monodon and Masupenaeus japonicus, was employed to identify yellow head virus (YHV)-responsive genes in hemocytes of P. monodon. A total of 105 differentially expressed genes were identified and grouped into five different clusters according to their expression patterns. One of these clusters, which comprised five genes including cathepsin L-like cysteine peptidase, hypothetical proteins and unknown genes, was of particular interest because the transcripts increased rapidly ($\leq$ 0.25 hours) and reached high expression levels in response to YHV injection. Microarray data were validated by realtime RT-PCR analyses of selected differentially expressed transcripts. In addition, comparative analysis of the hemocyte transcription levels of three of these genes between surviving and non-surviving shrimp revealed significantly higher expression levels in surviving shrimp.

Identification of Genes Differentially Expressed in Wild Type and Purkinje Cell Degeneration Mice

  • Xiao, Rui;Park, Youngsook;Dirisala, Vijaya R.;Zhang, Ya-Ping;Um, Sang June;Lee, Hoon Taek;Park, Chankyu
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.219-227
    • /
    • 2005
  • Purkinje cell degeneration (pcd) mice are characterized by death of virtually all cerebellar Purkinje cells by postnatal day 30. In this study, we used DNA microarray analysis to investigate differences in gene expression between the brains of wild type and pcd mice on postnatal day 20, before the appearance of clear-cut phenotypic abnormalities. We identified 300 differentially expressed genes, most of which were involved in metabolic and physiological processes. Among the differentially expressed genes were several calcium binding proteins including calbindin-28k, paravalbumin, matrix gamma-carboxyglutamate protein and synaptotagamins 1 and 13, suggesting the involvement of abnormal $Ca^{2+}$ signaling in the pcd phenotype.

Proteome analysis of sorghum (Sorghum bicolor L.) leaf in response to waterlogging stress

  • Yun, Min-Heon;Park, Hyeong-Jun;Jeong, Hae-Ryong;Roy, Swapan Kumar;Kwon, Soo Jeong;Chun, Hyen Chung;Cho, Seong-Woo;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.119-119
    • /
    • 2017
  • Growth related to morphological and proteome response under waterlogging stress in sorghum has not yet been elucidated. Understanding how plants respond to waterlogging, the present study was conducted in seedlings leaf of the Nam-pung chal cultivar. Regarding 3-leaf stage of sorghum, stem length and plant height were slightly decreased in the treatments during ten days of waterlogging, and chlorophyll contents were also significantly different from 7 days of waterlogging treatment. The results observed from the present study were considered to be influenced by the waterlogging stress more in the $5^{th}$ leaf stage of the growth period of the sorghum, and as the waterlogging treatment progressed, the waterlogging stress gradually influenced the growth difference between the control and the treatment respectively. Using 2-DE method, a total of 74 differentially expressed protein spots were analyzed using LTQ-FT-ICR MS. Of these proteins, 45 proteins were up-regulated in the treatment group, and 32 proteins were down-regulated. Analysis of LTQ-FI-ICR MS showed that about 50% of the proteins involved in carbohydrate metabolic process, metabolic process, and cellular metabolic compound salvage were affected by stress. Malate dehydrogenase protein and Glyceraldehyde-3-phosphate dehydrogenase protein related to carbohydrate metabolic process increased the level of protein expression in both 3 and 5-leaf stage under waterlogging stress. The increased abundance of these proteins may play an active role in response to waterlogging stress. These results provide new insights into the morphological alteration and modulation of differentially expressed proteins in sorghum cultivar.

  • PDF