• Title/Summary/Keyword: Differential reaction

Search Result 663, Processing Time 0.027 seconds

Cure Kinetics of amine-cured tetraglycidyl-4,4'-diaminodiphenylmethane epoxy blends with a new polyetherimide (반응성 열가소성 수지로 개질된 TGDDM/DDS 시스템의 Cure Kinetics)

  • Hwang Seungchul;Lee JungHoon;Kim Donghyon;Kim Woho;Kim Minyoung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.214-217
    • /
    • 2004
  • The cure kinetics of blends of epoxy(tetraglycidyl-4,4'-diaminodiphenylmethane ; TGDDM)/curing agent(diaminodiphenyl sulfone ; DDS) resin with amine terminated polyetherimide-CTBN-amine terminated polyetherimide triblock copolymer(ABA) were studied using differential scanning calorimetry under isothermal conditions to determine the reaction parameters such as activation energy and reaction constants. By increasing the amount of ABA in the blends, the final cure conversion was decreased. Lower values of the final cure conversions in the epoxy/ABA blends indicated that ABA hinders the cure reaction between the epoxy and curing agents. 1be value of the reaction order, m, for the initial autocatlytic reaction was not affected by blending ABA with epoxy resin, and the value was approximately 1.0. The value of n for the nth order component in the autocatalytic analysis was increased by increasing the amount of ABA in the blends, and the value increased from 2.0-3.4. A diffusion controlled reaction was observed as the cure conversion increased and the rate equation was successfully analyzed by incorporating the diffusion control term for the epoxy/DDS/ABA blends.

  • PDF

Hyperbolic Reaction-Diffusion Equation for a Reversible Brusselator: Solution by a Spectral Method

  • 이일희;김광연;조웅인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 1999
  • Stability characteristics of hyperbolic reaction-diffusion equations with a reversible Brusselator model are investigated as an extension of the previous work. Intensive stability analysis is performed for three important parameters, Nrd, β and Dx, where Nrd is the reaction-diffusion number which is a measure of hyperbolicity, β is a measure of reversibility of autocatalytic reaction and Dx is a diffusion coefficient of intermediate X. Especially, the dependence on Nrd of stability exhibits some interesting features, such as hyperbolicity in the small Nrd region and parabolicity in the large Nrd region. The hyperbolic reaction-diffusion equations are solved numerically by a spectral method which is modified and adjusted to hyperbolic partial differential equations. The numerical method gives good accuracy and efficiency even in a stiff region in the case of small Nrd, and it can be extended to a two-dimensional system. Four types of solution, spatially homogeneous, spatially oscillatory, spatio-temporally oscillatory and chaotic can be obtained. Entropy productions for reaction are also calculated to get some crucial information related to the bifurcation of the system. At the bifurcation point, entropy production changes discontinuously and it shows that different structures of the system have different modes in the dissipative process required to maintain the structure of the system. But it appears that magnitude of entropy production in each structure give no important information related for states of system itself.

Thermal Analysis of Nickel-Base Superalloys by Differential Scanning Calorimetry (시차주사열량측정법에 의한 니켈기 초내열 합금의 열분석)

  • Yun, Jihyeon;Oh, Junhyeob;Kim, Hongkyu;Yun, Jondo
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.235-240
    • /
    • 2016
  • Appropriate thermo-mechanical properties of nickel-based superalloys are achieved by heat treatment, which induces precipitation and solid solution hardening; thus, information on the temperature ranges of precipitation and dissolution of the precipitates is essential for the determination of the heat treatment condition. In this study, thermal analyses of nickel-based superalloys were performed by differential scanning calorimetry method under conditions of various heating rates of 5, 10, 20, or 40K/min in a temperature range of 298~1573K. Precipitation and dissolution temperatures were determined by measuring peak temperatures, constructing trend lines, and extrapolating those lines to the zero heating rate to find the exact temperature under isothermal condition. Determined temperatures for the precipitation reactions were 813, 952, and 1062K. Determined onset, peak, and offset temperatures of the first dissolution reaction were 1302, 1388, and 1406K, respectively, and those values of the second dissolution reaction were 1405, 1414, and 1462K. Determined solvus temperature was 1462K. The study showed that it was possible to use a simple method to obtain accurate phase transition temperatures under isothermal condition.

Screening of Differentially Expressed Genes in Diesel Oil-exposed Marine Fish Using DD-PCR

  • Woo, Seon-Ock;Yum, Seung-Shic;Yim, Un-Hyuk;Lee, Yaek-Kyun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.251-256
    • /
    • 2006
  • The exploration of genes which expressions are changed by exposure to ecotoxicants or pollutants can provide the important information about the reaction mechanisms in the body as well as adaptation to exterior stimulus or environmental changes. Also they can be developed as biomarkers for the detection of environmental pollution. Differential display polymerase chain reaction (DD-PCR) technique has been usefully used to hunt the clones which expressions are up-regulated or down-regulated by exterior changes and this study aimed to search for those clones in diesel oil-exposed rockfish (Sebastes schlegeli) using DD-PCR. The RNA isolated from liver of 20 ppb diesel oil-exposed rockfish was used for screening of the differentially displayed genes and total 44 differentially expressed genes (DEG) are detected then their nucleotide sequences were analyzed. The present data provided the general information about the effect of diesel oil contamination on marine organism and further more the primary step in development of new biomarkers for marine environmental pollution or ecotoxicological stresses.

Electro-Catalytic Hydrogenation and the Electrode Reaction Mechanism of the Carbon-6-Bromo groups of 6,6-Dibromopenicillanic acid 1,1-Dioxide (6,6-Dibromopenicillanic acid 1,1-Dioxide 분자내 탄소 6-위치 브롬기의 전극촉매 수소화반응과 전극반응기구)

  • Il Kwang Kim;Young Haeng Lee;Chai Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.165-171
    • /
    • 1991
  • The electrochemical reduction of carbon-6-dibromo groups on 6,6-dibromo penicillanic acid 1,1-oxide(DBPA) was investigated by direct current, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. The irreversible two electrons transfer on the reductive debromination of each bromo group proceeded by EC,EC mechanism at the two electrode reduction steps(-0.48, -1.62 volts). The 6-bromo-PA and 6,6-dihydro-PA was synthesized by controlled potential electrolysis. Upon the basis of results on the products analysis and interpretation of polarograms obtained at various pH, electrochemical reaction mechanism was suggested.

  • PDF

Electrochemical Reduction of 0,0-Dimethyl-0-(3-Methyl-4-Nitrophenyl)-phosphorothioate(Sumithion®) in Acetonitrile Solution (Acetonitrile 용액중(溶液中)에서 0,0-Dimethyl-0-(3-Methyl-4-Nitrophenyl)-phosphorothioate(Sumithion®)의 전기화학적(電氣化學的) 환원반응(還元反應))

  • Park, Seung Heui;Sung, Nack Do
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.2
    • /
    • pp.315-321
    • /
    • 1984
  • The electrochemical reduction of 0,0-dimethyl-0-(3-methyl-4 -nitrophenyl)-phosphorothioate ($Sumithion^{(R)}$) in acetonitrile solution has been studied by direct current (DC), differential pulse (DP) polarography and cyclic voltammetry methods. The irreversible electron-transfer chemical reaction (EC) mechanism of Sumithion proceeds by six electron-transfer to form radical and reduction of three-step which undergoes single bond of the phosphorus atom & phenoxy group by electron-transfer and protonation cleaved to give p-hydroxyamino-m-cresol and dimethylthiophosphonate as major product.

  • PDF

NUMERICAL METHOD FOR SINGULARLY PERTURBED THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS OF REACTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.277-302
    • /
    • 2017
  • In this paper, we have proposed a numerical method for Singularly Perturbed Boundary Value Problems (SPBVPs) of reaction-diffusion type of third order Ordinary Differential Equations (ODEs). The SPBVP is reduced into a weakly coupled system of one first order and one second order ODEs, one without the parameter and the other with the parameter ${\varepsilon}$ multiplying the highest derivative subject to suitable initial and boundary conditions, respectively. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference scheme. The weakly coupled system is decoupled by replacing one of the unknowns by its zero-order asymptotic expansion. Finally the present numerical method is applied to the decoupled system. In order to get a numerical solution for the derivative of the solution, the domain is divided into three regions namely two inner regions and one outer region. The Shooting method is applied to two inner regions whereas for the outer region, standard finite difference (FD) scheme is applied. Necessary error estimates are derived for the method. Computational efficiency and accuracy are verified through numerical examples. The method is easy to implement and suitable for parallel computing. The main advantage of this method is that due to decoupling the system, the computation time is very much reduced.

Electrochemical Study on the 3-Phenyl-4-Nitrosydnone (3-Phenyl-4-Nitrosydnone의 전기화학적 연구)

  • Il-Kwang Kim;Youn-Geun Kim;Soon-Jong Han
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.195-202
    • /
    • 1988
  • An electrochemical reduction on the 3-phenyl-4-nitrosydnone in acetonitrile solution has been studied by direct current, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. Before the cleavage of phenyl-N single bond a irreversible electron transfer-chemical reaction(EC) mechanism of nitro functional group proceeded to form amino (or-hydroxylamino) group by multielectron transfer which is followed to give phenyl hydrazine by single electron transfer-chemical reaction at the 2nd and 3rd irreversible reduction wave of high negative potential region. The cathodic half-wave potentials shown to be shift negative due to inhibitory effect of cetyl-trimethyl ammonium bromide micelle while reversible anodic peaks on the 2nd and 3rd reduction waves in the presence of NaLS at high negative potential region.

  • PDF

A Study on the Thermal Decomposition Characteristics of Nitrophenylhydrazine (니트로페닐하이드라진의 열분해 특성에 관한 연구)

  • 김관응;이근원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.75-79
    • /
    • 2001
  • For handling and storage of reactive chemicals, the hazard evaluations have been extremely important. In the chemical industry, the most concerns are focused on the thermal harzards such as runaway reactions and thermal decompositions, which are mostly governed by thermodynamics and reaction kinetics or these reactive chemical in the system. This study no investigated the thermal decomposition characteristics of nitrophenylhydrazine isomers by using differential scanning calorimeter(DSC) and accelerating rate calorimeter(ARC). Experimental results showed that exothermic onset-temperatures in nitrophenylhydrazine(NPH) isomers were about 160-$210^{\circ}C$ by DSC and 100-$150^{\circ}C$ by ARC. The decomposition temperature acquired by ARC was about 50-$60^{\circ}C$ lower than that by DSC. Reaction heats were about 40-100cal/g by DSC and 330-750ca1/g by ARC. While ortho isomer of NPH show two distinct exothermic peaks, para isomer shows a single peak in DSC curves. The first exothermic peak for 2-NPH is mainly due to intramolecular dehydration forming 1-hydroxybenzotriazole(HOBT) and the second exothermic peak is mainly due to the decomposition of HOBT formed in the first step of decomposition. The exothermin peak in the DSC curve for 4-NPH is mainly due to dissociation of hydrazino and nitro groups.

  • PDF

An Evaluation of Thermal Stability on Esterification Process in Manufacture of Concrete Mixture Agents (시멘트 혼화제 제조시 에스테르화공정의 열 안정성 평가)

  • Lee, Keun-Won;Lee, Jung-Suk;Choi, Yi-Rae;Han, In-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.40-46
    • /
    • 2009
  • The early identification of thermal hazards associated with a process such as the heats of reaction, exothermic decompositions, and the understanding of thermodynamics before any large scale operations are undertaken. The evaluation of reaction factors and thermal behavior on esterification process in manufacture of concrete mixture agents are described in the present paper. The experiments were performed in the differential scanning calorimetry(DSC), C 80 calorimeter, and thermal screening unit($TS^u$). The aim of the study was to evaluate the thermal stability of single material and mixture in esterification process. We provided the thermal data of chemical materials to present safe operating conditions through this study.