• Title/Summary/Keyword: Differential positioning

Search Result 236, Processing Time 0.031 seconds

Quality Test and Control of Kinematic DGPS Survey Results

  • Lim, Sam-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.75-80
    • /
    • 2002
  • Depending upon geographical features and surrounding errors in the survey field, inaccurate positioning is inevitable in a kinematic DGPs survey. Therefore, a data inaccuracy detection algorithm and an interpolation algorithm are essential to meet the requirement of a digital map. In this study, GPS characteristics are taken into account to develop the data inaccuracy detection algorithm. Then, the data interpolation algothim is obtained, based on the feature type of the survey. A digital map for 20km of a rural highway is produced by the kinematic DGPS survey and the features of interests are lines associated with the road. Since the vertical variation of GPS data is relatively higher, the trimmed mean of vertical variation is used as criteria of the inaccuracy detection. Four cases of 0.5%, 1%, 2.5% and 5% trimmings have been experimented. Criteria of four cases are 69cm, 65cm, 61cm and 42cm, respectively. For the feature of a curved line, cublic spine interpolation is used to correct the inaccurate data. When the feature is more or less a straight line, the interpolation has been done by a linear polynomial. Difference between the actual distance and the interpolated distance are few centimeters in RMS.

  • PDF

Modeling Alignment Experiment Errors for Improved Computer-Aided Alignment

  • Kim, Yunjong;Yang, Ho-Soon;Song, Jae-Bong;Kim, Sug-Whan;Lee, Yun-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.525-532
    • /
    • 2013
  • Contrary to the academic interests of other existing studies elsewhere, this study deals with how the alignment algorithms such as sensitivity or Differential Wavefront Sampling (DWS) can be better used under effects from field, compensator positioning and environmental errors unavoidable from the shop-floor alignment work. First, the influences of aforementioned errors to the alignment state estimation was investigated with the algorithms. The environmental error was then found to be the dominant factor influencing the alignment state prediction accuracy. Having understood such relationship between the distorted system wavefront caused by the error sources and the alignment state prediction, we used it for simulated and experimental alignment runs for Infrared Optical System (IROS). The difference between trial alignment runs and experiment was quite close, independent of alignment methods; 6 nm rms for sensitivity method and 13 nm rms for DWS. This demonstrates the practical usefulness and importance of the prior error analysis using the alignment algorithms before the actual alignment runs begin. The error analysis methodology, its application to the actual alignment of IROS and their results are described together with their implications.

A Design of Low Cost Differential GPS System based on Web-Service (웹서비스 기반의 저가형 위성항법보정시스템 설계)

  • Jung, Se-Hoon;Seo, Ho-Seok;Park, Dong-Gook;Sim, Chun-Bo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.487-498
    • /
    • 2013
  • A variety of location-based services applications, such as missing children search, emergency rescue requests and so on that requiring high-precision location information are increasing. Precision of GPS that can be used in most systems, however, is still low. In this paper, we design and propose a low cost differential global positioning system(DGPS) based on Web services using object-oriented modeling technique which can offer useable location service, variety device and safe service in wireless environment. The proposed system is designed with UML based on object-oriented modeling to maximize system recyclability and system scalability. In addition, we would like to improve the precision of the GPS in accordance with mobile station location when build low cost mobile station, location differential framework and server. We implement a communication interface based on web-service which is available in the form of a variety of services and can offer stable according to mobile environments. Finally, as performance evaluation results, we can obtain precision location within 1 ~ 2m through proposed system and 88.5% probability of less than 2m.

Analysis of Propagation Environment for Selecting R-Mode Reference and Integrity Station (R-Mode 보정국과 감시국 선정을 위한 전파환경 분석에 관한 연구)

  • Jeon, Joong-Sung;Jeong, Hae-Sang;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.45 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • In ocean field, the spread of the Fourth Industrial Revolution based on information and communication technology requires high precision and stable PNT&D (Position, Navigation, Timing and Data). As the IMO (International Maritime Organization) and IALA (The International Association of Marine Aids to Navigation and Lighthouse Authorities) are requiring backup systems due to mitigate vulnerabilities and the increase of dependency on GNSS (Global Navigation Satellite System), Korea is conducting a research & development of R-Mode. An DGPS (Differentiate Global Positioning System) reference station that uses MF, an existing maritime infrastructure, and AIS (Automatic Identification System) base stations that use 34 integrity station and VHF will be utilized in this study to avoid redundant investment. Because there are radio shadow areas that display low signal levels in the west sea, the establishment of new R-Mode reference and integrity station will be intended to resolve problems regrading the radio shadow area. Because the frequency has a characteristic in that radio wave transmits well along the ground (water surface) in low frequency band, simulation and measurement were conducted therefore this paper to propose candidate sites for R-Mode reference and integrity station resulted through p wave's propagation characteristics analysis. Using this paper, R-Mode reference and integrity station can be established at appropriate locations to resolve radio shadow areas in other regions.

Design and Implementation of Mobile Phone Interface Module for DGPS Correction Message Transmission (DGPS 보정신호 전송을 위한 휴대전화 인터페이스 모듈의 설계 및 구현)

  • Yi, Jae-hoon;Kim, Chang-Soo;Jeong, Seong-Hoon;Lee, Tae-Oh;Yun, Hee-Chul;Yim, Jae-Hong
    • Journal of Navigation and Port Research
    • /
    • v.26 no.4
    • /
    • pp.419-426
    • /
    • 2002
  • The conventional RTK-GPS technique has many problems which are permission using RF wireless modem, influence of geographic obstacle using radio wave, frequency interference, finiteness of frequency resources. To solve these problems, in this paper, we designed the DGPS correction message transmission system as a method to substitute the RF wireless modem of RTK-DGPS receiver. Then the interface module was designed and implemented for linkage of GPS receiver and mobile phone. As a result worked differential surveying using receiving correction message using RS-232C and communication control, users of mobile station were worked differential surveying correction between mobile phones. Interface module system was received the same result of precision which was compared RF wireless modem system.

A Study on Pseudo-Range Correction Modeling in order to Improve DGNSS Accuracy (DGNSS 위치정확도 향상을 위한 PRC 보정정보 모델링에 관한 연구)

  • Sohn, Dong Hyo;Park, Kwan Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • We studied on pseudo-range correction(PRC) modeling in order to improve differential GNSS(DGNSS) accuracy. The PRC is the range correction information that provides improved location accuracy using DGNSS technique. The digital correction signal is typically broadcast over ground-based transmitters. Sometimes the degradation of the positioning accuracy caused by the loss of PRC signals, radio interference, etc. To prevent the degradation, in this paper, we have designed a PRC model through polynomial curve fitting and evaluated this model. We compared two quantities, estimations of PRC using model parameters and observations from the reference station. In the case of GPS, the average is 0.1m and RMSE is 1.3m. Most of GPS satellites have a bias error of less than ${\pm}1.0m$ and a RMSE within 3.0m. In the case of GLONASS, the average and the RMSE are 0.2m and 2.6m, respectively. Most of satellites have less than ${\pm}2.0m$ for a bias error and less than 3.0m for RMSE. These results show that the estimated value calculated by the model can be used effectively to maintain the accuracy of the user's location. However;it is needed for further work relating to the big difference between the two values at low elevation.

A Site Environment Analysis of NDGPS Reference Stations Co-operating for SBAS (NDGPS 기준국의 SBAS 기준국으로의 공동 활용을 위한 기준국 환경 분석)

  • Han, Young-hoon;Park, Sul-gee;Park, Sang-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1696-1703
    • /
    • 2016
  • In this paper, it verifies site environment aspect that NDGPS (Nationwide Differential Global Positioning System) operated by MOF (Ministry of Oceans and Fisheries) will be used as the same site of reference stations for SBAS (Satellite Based Augmentation System). In order to prove this feasibility, we analyze the site environment requirements for SBAS reference stations, as well as we establish the procedure for the verification of the site environment requirements. With this procedure of the site environment survey, we perform site survey in the real field and analyze the results. We select interim candidate sites for survey which currently operating 17 NDGPS reference stations. This paper could be utilized in the process of selection or installation of reference stations in the field of GNSS(Global Navigation Satellite System) and the drawing the consideration which NDGPS reference stations will be co-operated as SBAS reference stations.

Investigation of Dice Artificial Reef Stability Installed (1981-2004 years) on Pohang Coast of the East Sea (경상북도 포항시 해역에 시설된(1981-2004년) 사각형 어초의 상태조사)

  • Cho, Yong-Chul;Kim, Wan-Ki;Lee, Chae-Sung;Kim, Nam-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.177-182
    • /
    • 2010
  • Sediment transport around artificial habitat which is induced by the change of flow due to installation of the structure plays a role not only as a defect function of subsidence and burial but also bottom-environment control function. Using Side Scan Sonar (SSS), Differential Global Positioning System (DGPS) and Scuba diving equipment, we investigated a facility condition of a dice reef installed on Pohang coast of the East Sea. Investigation result, at total 139 place, 10,526 dice reef was discovered. As the level which affects function of the above 0.5m, the case 4 place of burial (0.5~1.2m, 2.9%), scour appeared with 3 place (0.5m, 2.2%) and broken was appeared with 183 artificial reefs (1.74%). As a result, dice reef installed Pohang coast appeared to mostly stable.

Real-time monitoring of grab dredging operation using ECDIS (ECDIS에 의한 grab 준설작업의 실시간 모니터링에 관한 연구)

  • Jung, Ki-Won;Lee, Dae-Jae;Jeong, Bong-Kyu;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.2
    • /
    • pp.140-148
    • /
    • 2007
  • This paper describes on the real-time monitoring of dredging information for grab bucket dredger equipped with winch control sensors and differential global positioning system(DGPS) using electronic chart display and information system(ECDIS). The experiment was carried out at Gwangyang Hang and Gangwon-do Oho-ri on board M/V Kunwoong G-16. ECDIS system monitors consecutively the dredging's position, heading and shooting point of grab bucket in real-time through 3 DGPS attached to the top bridge of the dredger and crane frame. Dredging depth was measured by 2 up/down counter fitted with crane winch of the dredger. The depth and area of dredging in each shooting point of grab bucket are displayed in color band. The efficiency of its operation can be ensured by adjusting the tidal data in real-time and displaying the depth of dredging on the ECDIS monitor. The reliance for verification of dredging operation as well as supervision of dredging process was greatly enhanced by providing three-dimensional map with variation of dredging depth in real time. The results will contribute to establishing the system which can monitor and record the whole dredging operations in real-time as well as verify the result of dredging quantitatively.

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.