• Title/Summary/Keyword: Differential effects

Search Result 1,788, Processing Time 0.035 seconds

Effect of Differential Pressure on the Performance of Motor Operated Flexible Wedge Gate Valve (차압이 모터구동 Flexible Wedge형 게이트밸브의 성능에 미치는 영향)

  • Kim, Dae-Woong;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.151-158
    • /
    • 2007
  • The mechanism of power transmission from motor torque to stem thrust and the operation characteristic of each stroke position are analyzed using the diagnostic signal, and effects of differential pressure on the performance of motor operated flexible wedge gate valve are investigated. Test facility consists of 76 mm motor operated valve(flexible wedge type), pump and pipe system. Static and dynamic test are performed separately, and two differential pressure conditions are applied in the dynamic test. To evaluate the performance of valve, test signals for the torque, thrust, current, voltage and stroke length are acquired by using UDS which is diagnosis device for motor operated valve, and each diagnostic signal is analyzed and compared. The characteristic of valve performance factors such as stem factor, rate of loading, valve factor, are evaluated, and these factors are found to be severely influenced by the fluid differential pressure.

Nonlinear stability of bio-inspired composite beams with higher order shear theory

  • Nazira Mohamed;Salwa A. Mohamed;Alaa A. Abdelrhmaan;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.759-772
    • /
    • 2023
  • This manuscript presents a comprehensive mathematical model to investigate buckling stability and postbuckling response of bio-inspired composite beams with helicoidal orientations. The higher order shear deformation theory as well as the Timoshenko beam theories are exploited to include the shear influence. The equilibrium nonlinear integro-differential equations of helicoidal composite beams are derived in detail using the energy conservation principle. Differential integral quadrature method (DIQM) is employed to discretize the nonlinear system of differential equations and solve them via the Newton iterative method then obtain the response of helicoidal composite beam. Numerical calculations are carried out to check the validity of the present solution methodology and to quantify the effects of helicoidal rotation angle, elastic foundation constants, beam theories, geometric and material properties on buckling, postbuckling of bio-inspired helicoidal composite beams. The developed model can be employed in design and analysis of curved helicoidal composite beam used in aerospace and naval structures.

Effects of Exposure of Propidium Iodide and Bisbenzimide on Differential Staining of Mouse Blastocysts (마우스 배반포 배의 Differential staining에서 Propidium Iodide와 Bisbenzimide의 노출이 미치는 영향)

  • Park, Kee-Sang;Park, Sung-Baek;Lee, Taek-Hoo;Chun, Sang-Sik;Song, Hai-Bum
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.4
    • /
    • pp.317-322
    • /
    • 2002
  • Objective: These experiments were conducted to investigate the optimal expose length of propidium iodide (PI) and bisbenzimide on differential staining of mouse blastocysts. Materials and methods: A total 964 blastocysts (early${\sim}$hatched) was exposed to PI (n=831) (group I: $\leq$ 10; II: $11{\sim}15$; III: $16{\sim}20$; IV: $\geq$21 sec) and bisbenzimide (n=133) (group A: $\leq$1; B: $1{\sim}$3; C: $\geq$ 4 hr) in several periods for differential staining. Statistical analysis was performed using t-test with SigmaPlot-2001. P-values < 0.05 were accepted as statistically significant. Results: In case of PI exposure, differential staining rates were significantly higher (p<0.05) in group I (89.8%) than in any others (group II: 77.6%; III: 29.6%; IV: 22.2%) and higher (p<0.05) in group II than in group III and IV. In case of bisbenzimide exposure, differential staining rates were not statistically differences in three groups (group A: 97.4%; B: 87.8%; C: 93.3%). Conclusion: The differential staining rates of mouse blastocysts are not affected by the exposure length of bisbenzimide. However, blastocysts were exposed to PI with period of shorter than 15 sec show best outcomes of differential staining rates.

Effects of Conventional Rolling and Differential Speed Rolling on Microstructure and Mechanical Properties of a Copper Alloy Sheet (동속압연과 이속압연이 동합금판재의 조직 및 기계적 성질에 미치는 영향)

  • Lee, Seong-Hee;Lim, Jung-Youn;Yoon, Dae-Jin;Euh, Kwang-Jun;Han, Seung-Zeon
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • The effects of conventional rolling (CR) and differential speed rolling (DSR) on the microstructure and mechanical properties of a copper alloy sheet were investigated in detail. A copper alloy with thickness of 3 mm was rolled to a 50% reduction at ambient temperature without lubrication with a differential speed ratio of 2:1; sample was then annealed for 0.5h at various temperatures from 100 to $800^{\circ}C$. Conventional rolling, in which the rolling speed of the upper and lower rolls is identical, was performed under the same rolling conditions. The shear strain introduced by the CR showed positive values at positions on the upper roll side and negative values at positions on the lower roll side. However, the shear strain showed a zero or positive value at all positions for the samples rolled by the DSR. The microstrucure and mechanical properties of the as-rolled copper alloy did not show very significant differences between the CR and DSR for the microstructure and mechanical properties. However, those properties showed very significant differences in the case of the annealed samples. The effects of rolling method on the microstructure and mechanical properties of the as-rolled and subsequently annealed materials are discussed in terms of the shear strain.

An Empirical Test of Social Learning Theory and Complementary Approach in Explanation of University Students' Crimes in Social Network Services (SNS상의 범죄행위 설명에 있어 사회학습이론과 보완적 논의의 검증)

  • Lee, Seong-Sik
    • Informatization Policy
    • /
    • v.22 no.4
    • /
    • pp.91-104
    • /
    • 2015
  • This study tests the effects of differential association, definitions, differential reinforcement and imitation from social learning theory in the explanation of university students' crimes in social network services. In addition, this study tests the interaction effects between social learning factors and other factors such as low self-control, subcultural environment, and crime opportunity for the integrated approach. Using data from 486 university students in Seoul, results show that both definition and imitation have significant influences on crimes, even though differential association and differential reinforcement factors have no significant influences on crimes in social network services. Results also reveal that there are significant interaction effects between definition and subcultural environment, which meana that definition has a strong effect on crimes in high subcultural environment. In addition, it is found that reinforcement has also a strong effect on crimes in high crime opportunity and that interaction effect between imitation and low self-control is significant, which means that imitation has a strong effect on crimes in low self-control students.

The effective properties of saturated concrete healed by EDM with the ITZs

  • Chen, Qing;Jiang, Zhengwu;Zhu, Hehua;Ju, J.W.;Yan, Zhiguo;Li, Haoxin
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.67-74
    • /
    • 2018
  • A differential scheme based micromechanical framework is proposed to obtain the effective properties of the saturated concrete repaired by the electrochemical deposition method (EDM) considering the interfacial transition zone (ITZ) effects. The constituents of the repaired concrete are treated as different phases, consisting of (micro-)cracks, (micro-)voids and (micro-)pores (occupied by water), deposition products, intrinsic concrete made up by the three traditional solid phases (i.e., mortar, coarse aggregates and their interfaces) and the ITZs. By incorporating the composite sphere assemblage (CSA) model and the differential approach, a new multilevel homogenization scheme is utilized to quantitatively estimate the mechanical performance of the repaired concrete with the ITZs. The CSA model is modified to obtain the effective properties of the equivalent particle, which is a three-phase composite made up of the water, deposition products and the ITZs. The differential scheme is employed to reach the equivalent composite of the concrete repaired by EDM considering the ITZ effects. Moreover, modification procedures considering the ITZ effects are presented to attain the properties of the repaired concrete in the dry state. Results in this study are compared with those of the existing models and the experimental data. It is found that the predictions herein agree better with the experimental data than the previous models.

Effects of Ginsenoside Rg3 Epimers on Swine Coronary Artery Contractions

  • Kim, Jong-Hoon;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.29 no.3
    • /
    • pp.119-125
    • /
    • 2005
  • The previous reports demonstrated that ginseng saponins, active ingredient of Panax ginseng, inhibited blood vessel contraction induced by various hormones or high $K^+$. Recently, we demonstrated that 20(R)- and 20(S)-ginsenoside $Rg_3$. regulate ion channel activities with differential manners. The aim of this study was to examine whether ginsenoside $Rg_3$ isomers also show differential effects on swine coronary artery contractionresponses induced by high $K^+$, serotonin (5-HT) or acetylcholine. Treatment of 20(S)- but not 20(R)-ginsenoside $Rg_3$ caused a concentration-dependent relaxation of coronary artery contracted by 25mM KCI. 20(S)- and 20(R)-ginsenoside $Rg_3$ induced significant relaxations of coronary artery contraction induced by 5-HT $(3{\mu}M)$ in the presence of endothelium with concentration-dependent manner and, also in the absence of endothelium only 20(S)-ginsenoside $Rg_3$ induced a strong Inhibition of coronary artery contraction induced by 5-HT in a concentration-dependent manner. 20(S)-ginsenoside $Rg_3$ caused relaxation of coronary artery in the absence and presence of endothelium. In contrast, treatment of 20(S)- and 20(R)-ginsenoside $Rg_3\;(100{\mu}M)$ did not show significant inhibition of coronary artery contraction induced by acetylcholine $(0.01\;to\;30{\mu}M)$ in the presence of endothelium, whereas both isomers caused significant inhibition of coronary artery contraction induced by acetylcholine $(0.01\;to\;30{\mu}M)$ in the absence of endothelium in a concentration-dependent manner. These findings indicate that 20(S)-or 20(R)-ginsenoside $Rg_3$ exhibits differential relaxation eff3cts of swine coronary artery contractions caused by high $K^+$, acetylcholine, and 5-HT treatment and that this differential vasorelaxing effects of ginsenoside $Rg_3$ isomers also might be dependent on endothelium.

Embeded-Steel Restraining Effects due to Differential Drying Shrinkage in SRC(Steel Reinforced Concrete ) Structures (매립형 철골합성구조의 부등건조수축에 따른 내부강재구속효과에 관한 연구)

  • 조병환;김성호;김영진;고상윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.303-308
    • /
    • 2000
  • During the past few decades, several composite steel-concrete structural systems have been used and the demand of SRC (Steel Reinforced Concrete) structure increases on the construction of coping structures. But drying shrinking of concrete which is not uniform and the additional restraining effects of encased steel in concrete may cause the crack which leads to harmful damage to structure. In this study, specimens were made to show the restraining effects of embeded-steel in concrete and the differential drying shrinkage strains at various position of concrete were measured and analysed by Compensation Line Method. The results showed that there were remarkable difference in the drying shrinkage according to 속 depth of the concrete, and the tensile stress of the concrete near to encased steel showed the significant amount of stress contrary to 속 specimen which has no embeded-steel.

  • PDF

Analysis for Local Structure of Gaseous Hydrogen/liquid Oxygen Flame at Supercritical Pressures (초임계 압력상태에서 기체수소/액체산소 국소화염구조 해석)

  • Kim, Tae-Hoon;Kim, Seong-Ku;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2010
  • Significant real fluid behaviors including rapid property changes take place where high pressure combustion devices such as rocket engines. The flamelet model is the reliable approach to account for the real fluid effects. In the present study, the flamelet equations are extended to treat the general fluids over transcritical and supercritical states. The real fluid flamelet model is carried out for the gaseous hydrogen and cryogenic liquid oxygen flames at the wide range of thermodynamic conditions. Based on numerical results, the precise discussions are made for effects of real fluid, pressure, and differential diffusion on the local flame structure.

A Study on Behaviors of Prestressed Bridge Girders Made Continuous (연속화된 Prestress 거더교의 거동연구)

  • 구민세;최인식;김진헌
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.396-403
    • /
    • 2002
  • To eliminate deck joints, continuous span bridges are becoming an attractive option. Defferent continuty methods and construction sequences have different time-dependent effects on the behavior of the bridge system. This paper is carried out to evaluate the restraint moments generated at interior span of bridges constructed with full-span prestessed concrete bridge. Especially, effects of creep and shrinkage between ACI209-95 and Eurocode 2 are compared in this paper. Time-dependent effects in prestressed concrete bridges include creep and shrinkage of concrete. Creep due to prestress makes the girders camber up and cause positive restraint moments. The most significant effect of shrinkage in continuous bridges is the differential shrinkage that occurs because of the difference in type and age of girder and deck concrete. Differential shrinkage between the precast girder and the deck typically causes negative res03int moments.

  • PDF