• 제목/요약/키워드: Differential Histogram

검색결과 36건 처리시간 0.026초

쿼드 트리를 이용한 동적 공간 분할 기반 차분 프라이버시 k-평균 클러스터링 알고리즘 (Differentially Private k-Means Clustering based on Dynamic Space Partitioning using a Quad-Tree)

  • 구한준;정우환;오성웅;권수용;심규석
    • 정보과학회 논문지
    • /
    • 제45권3호
    • /
    • pp.288-293
    • /
    • 2018
  • 최근 공개되는 데이터에 적용하는 다양한 프라이버시 보호 기법들이 연구가 되어왔다. 그 중 차분 프라이버시는 본래의 데이터에 확률적인 노이즈를 더하여 공격자의 사전 지식에 상관없이 개인 정보를 보호한다. 기존 차분 프라이버시를 만족하는 k-평균 클러스터링은 데이터로부터 차분 프라이버시를 만족하는 히스토그램 형태로 바꾼 뒤. k-평균 클러스터링 알고리즘을 수행한다. 하지만 이는 데이터의 분포와 상관없이 등간격으로 히스토그램을 만들기 때문에 노이즈가 삽입되는 버킷이 많아지는 단점이 있다. 이를 해결하기 위해 본 논문에서는 데이터의 분포를 더 적은 버킷으로 나타낼 수 있는 쿼드 트리를 이용하여 히스토그램을 만든 뒤 k-평균을 찾는 알고리즘을 제안한다. 또한, 실험을 통해 기존의 알고리즘보다 더 좋은 성능을 가지는 것을 보인다.

New Approach to Two-wheeler Detection using Correlation Coefficient based on Histogram of Oriented Gradients

  • Lee, Yeunghak;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • 제3권4호
    • /
    • pp.119-128
    • /
    • 2016
  • This study aims to suggest a new algorithm for detecting two-wheelers on road that have various shapes according to the viewing angle for vision based intelligent vehicles. This article describes a new approach to two-wheelers detection algorithm riding on people based on modified Histogram of Oriented Gradients (HOG) using correlation coefficient (CC). The CC between two local area variables, in which one is the person riding a bike and other is its background, can represent correlation relation. First, we extract edge vectors using HOG which includes gradient information and differential magnitude as cell based. And then, the value, which is calculated by the CC between the area of each cell and one of two-wheelers, can be extracted as the weighting factor in process for normalizing the modified HOG cell. This paper applied the Adaboost algorithm to make a strong classification from weak classification. In this experiment, we can get the result that the detection rate of the proposed method is higher than that of the traditional method.

Two-wheeler Detection System using Histogram of Oriented Gradients based on Local Correlation Coefficients and Curvature

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • 제2권4호
    • /
    • pp.303-310
    • /
    • 2015
  • Vulnerable road users such as bike, motorcycle, small automobiles, and etc. are easily attacked or threatened with bigger vehicles than them. So this paper suggests a new approach two-wheelers detection system riding on people based on modified histogram of oriented gradients (HOGs) which is weighted by curvature and local correlation coefficient. This correlation coefficient between two variables, in which one is the person riding a bike and other is its background, can represent correlation relation. First, we extract edge vectors using the curvature of Gaussian and Histogram of Oriented Gradients (HOG) which includes gradient information and differential magnitude as cell based. And then, the value, which is calculated by the correlation coefficient between the area of each cell and one of bike, can be used as the weighting factor in process for normalizing the HOG cell. This paper applied the Adaboost algorithm to make a strong classification from weak classification. The experimental results validate the effectiveness of our proposed algorithm show higher than that of the traditional method and under challenging, such as various two-wheeler postures, complex background, and even conclusion.

영상의 명암대비 향상 및 균형적인 밝기 분포를 위한 변형된 히스토그램 압축 평활화 기법 (Histogram compression equalization method that has been deformed for the distribution of brightness and balanced improvement of the image contrast)

  • 김종인;이재원;홍성훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.820-823
    • /
    • 2013
  • 최근 스마트폰, 카메라, 휴대용 기기 등의 확산으로 다양한 분야에서 영상의 화질 향상의 필요성이 증가하고 있다. 영상의 화질 향상에 큰 영향을 주는 방법이 명암대비 향상이며 명암대비를 향상시키는 대표적인 방법으로는 히스토그램 평활화 방법이 있으며 다양한 연구가 이루어지고 있다. 그러나 일반적인 히스토그램 평활화 방법은 밝기만을 재조정하는 방법으로써 히스토그램이 한 쪽으로 치우친 영상의 경우 과도한 밝기 변화로 인하여 블록현상과 같은 왜곡이 발생한다. 본 논문에서는 히스토그램 분포의 평균 밝기를 균형 있게 재 분포 및 압축을 통해서 명암대비 향상 기법을 제안한다. 제안한 방법은 과도한 명암대비 증가로 인한 과포화 현상을 억제하기 위하여 히스토그램 빈도수에 따라 히스토그램을 차등 압축 시키며, 한 쪽으로 치우친 히스토그램을 균형 있게 재배열함으로써 영상의 밝기를 균형 있게 한다. 실험결과 제안방법은 기존 방법에 비해 영상의 밝기가 균형적이며 기존 방법에 비해 과포화 현상 없이 좋은 명암대비 향상 효과를 보였다.

  • PDF

서포트 벡터 머신 기반 비디오 조각파일 분류 (Support Vector Machines-based classification of video file fragments)

  • 강현석;이영석
    • 한국산학기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.652-657
    • /
    • 2015
  • BitTorrent는 다수의 파일 공유자들로부터 조각파일을 전송 받아 하나의 완전한 파일을 완성할 수 있는 파일 공유 및 전송과 관련된 혁신적인 프로토콜이다. 그러나, 불법 또는 저작권과 관련된 비디오 데이터들이 임의로 배포되는 범죄행위가 발생하는 것이 현실이다. BitTorrent 상에 데이터에 대한 저작권 단속의 어려움은 데이터의 전송형태가 완전한 파일 형식이 아닌 조각 파일 형태로 전송된다는 점이다. 따라서, BitTorrent에서 얻어진 조각파일에서 디지털 콘텐츠를 복원하고, 저작권 위반 여부를 판단하기 위해서는 디지털 콘텐츠의 파일 형식에 대한 분류 과정이 선행 되어야 한다. 본 연구에서는 디지털 파일의 형식을 분류하기 위한 방법으로서 조각파일의 히스토그램 차분을 특징 벡터로 하는 SVM 분류기를 제안 하였다. 제안한 분류기는 3종류의 비디오 파일 형식에 적용하여 분류율로 성능을 평가하였다.

PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템 설계 (Design of Optimized pRBFNNs-based Night Vision Face Recognition System Using PCA Algorithm)

  • 오성권;장병희
    • 전자공학회논문지
    • /
    • 제50권1호
    • /
    • pp.225-231
    • /
    • 2013
  • 본 연구에서는 PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템을 설계 하고자 한다. 조명이 없는 주위 상태 하에서 조도가 낮기 때문에 CCD 카메라를 이용하여 영상을 획득하는 것이 어렵다. 본 논문에서는 낮은 조도에 의해 왜곡된 이미지의 품질을 나이트 비전 카메라와 히스토그램 평활화를 사용하여 향상시킨다. 그리고 얼굴과 비얼굴 이미지 영역 사이에서 얼굴 이미지를 검출하기 위하여 Ada-Boost 알고리즘을 사용한다. 추출된 고차원 특징 데이터를 저차원의 특징 데이터로 변환하기 위하여 데이터 차원축소 기법인 주성분 분석법(Principal Components Analysis; PCA)을 사용한다. 또한 인식 모듈로서 pRBFNNs(Polynomial- based Radial Basis Function Neural Networks) 패턴분류기를 소개한다. 제안된 다항식 기반 RBFNNs은 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 구성되어 있다. 조건부는 FCM (Fuzzy C-means) 클러스터링을 사용하여 입력공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 그리고 차분진화 (Differential Evolution; DE) 알고리즘을 사용하여 모델의 파라미터를 최적화 한다.

파킨슨증의 음성진전 : 감별진단을 위한 예비연구 (Voice Tremor in Parkinsonism : A Preliminary Study for Differential Diagnosis)

  • 최성희;김향희;이원용;최홍식
    • 음성과학
    • /
    • 제12권3호
    • /
    • pp.19-33
    • /
    • 2005
  • Tremor is a main factor of parkinsonism. Voice tremor may be the first, later or the only symptom of a neurological disease and its frequency, amplitude, and regularity may differ among the diseases of different neural subsystems. Differential diagnosis between idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA) has been difficult. This study included three groups: (1) 6 IPD patients; (2) 6 MSA patients; and (3) 20 ageand sex-matched normal controls. The MDVP (Multidimensional Voice Program) was used to analyze the sustained /a/phonation. The results were as follows: (1) frequency perturbation parameters (jitter, sPPQ, Vf0) and FTRI of tremor parameter of two patient groups were statistically different from those of the controls (p < .01); (2) measures were higher in short-term and long-term f0 and amplitude perturbation in MSA than IPD; (3) however, any acoustic parameters between IPD and MSA were not statistically different; except for the rate of frequency tremor, 4$\sim$5 Hz in IPD, 5$\sim$11 Hz in MSA and (4) the pattern of regularity for voice tremor through histogram indicated that amplitude of IPD was irregular while both f0 and amplitude of MSA were irregular. In conclusion, F0, rate of frequency tremor, and pattern of f0 regularity may be predictors for differential diagnosis. These findings might signify that voice tremor of parkinsonism was resulted from modulation of f0.

  • PDF

Writer Verification Using Spatial Domain Features under Different Ink Width Conditions

  • Kore, Sharada Laxman;Apte, Shaila Dinkar
    • Journal of Computing Science and Engineering
    • /
    • 제10권2호
    • /
    • pp.39-50
    • /
    • 2016
  • In this paper, we present a comparative study of spatial domain features for writer identification and verification with different ink width conditions. The existing methods give high error rates, when comparing two handwritten images with different pen types. To the best of our knowledge, we are the first to design the feature with different ink width conditions. To address this problem, contour based features were extracted using a chain code method. To improve accuracy at higher levels, we considered histograms of chain code and variance in bins of histogram of chain code as features to discriminate handwriting samples. The system was trained and tested for 1,000 writers with two samples using different writing instruments. The feature performance is tested on our newly created dataset of 4,000 samples. The experimental results show that the histogram of chain code feature is good compared to other methods with false acceptance rate of 11.67%, false rejection rate of 36.70%, average error rates of 24.18%, and average verification accuracy of 75.89% on our new dataset. We also studied the effect of amount of text and dataset size on verification accuracy.

Linearity improvement of UltraScale+ FPGA-based time-to-digital converter

  • Jaewon Kim;Jin Ho Jung;Yong Choi;Jiwoong Jung;Sangwon Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.484-492
    • /
    • 2023
  • Time-to-digital converters (TDCs) based on the tapped delay line (TDL) architecture have been widely used in various applications requiring a precise time measurement. However, the poor uniformity of the propagation delays in the TDL implemented on FPGA leads to bubble error and large nonlinearity of the TDC. The purpose of this study was to develop an advanced TDC architecture capable of minimizing the bubble errors and improving the linearity. To remove the bubble errors, the decimated delay line (DDL) architecture was implemented on the UltraScale + FPGA; meanwhile, to improve the linearity of the TDC, a histogram uniformization (HU) and multi-chain TDL (MCT) methods were developed and implemented on the FPGA. The integral nonlinearities (INLs) and differential nonlinearities (DNLs) of the plain TDCs with the 'HU method' (HU TDC) and with 'both HU and MCT methods' (HU-MCT TDC) were measured and compared to those of the TDC with 'DDL alone' (plain TDC). The linearity of HU-MCT TDC were superior to those of the plain TDC and HU TDC. The experiment results indicated that HU-MCT TDC developed in this study was useful for improving the linearity of the TDC, which allowed for high timing resolution to be achieved.

HOG 특징과 다중 프레임 연산을 이용한 보행자 탐지 (Pedestrian Detection using HOG Feature and Multi-Frame Operation)

  • 서창진;지홍일
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.193-198
    • /
    • 2015
  • A large number of vision applications rely on matching keypoints across images. Pedestrian detection is under constant pressure to increase both its quality and speed. Such progress allows for new application. A higher speed enables its inclusion into large systems with extensive subsequent processing, and its deployment in computationally constrained scenarios. In this paper, we focus on improving the speed of pedestrian detection using HOG(histogram of oriented gradient) and multi frame operation which is robust to illumination changes in cluttering images. The result of our simulation indicates that the detection rate and speed of the proposed method is much faster than that of conventional HOG and differential images.