• 제목/요약/키워드: Differential Controller

검색결과 224건 처리시간 0.023초

궤환 제어시스템의 강인성 증진을 위한 미분 관리제어기 (A Differential Supervisory Controller for Robustness Increase of Feedback Control System)

  • 박왈서
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권8호
    • /
    • pp.363-367
    • /
    • 2003
  • Robust control for feedback control system is needed according to the highest precision of industrial automation. However, when a feedback control system has an effect of disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, Hybrid control method of feedback and Differential Supervisory controller is presented. A Feedback Controller is operated as a main controller, A Differential Supervisory Controller is a controller which operates only when some undesirable phenomena occur, e. g., when the error hits the boundary of constraint set. The robust control function of Differential Supervisory Controller, as a assistant controller is operated when state is unstable by disturbance. it demonstrated by speed control of motor.

서보 제어시스템에서 미분 관리제어기의 강인성에 관한 연구 (A Study on the Robustness of Differential Supervisory Controller From Servo Control System)

  • 박왈서;이성수;오훈
    • 조명전기설비학회논문지
    • /
    • 제17권1호
    • /
    • pp.112-115
    • /
    • 2003
  • 산업 자동화의 고정밀도에 따라 서보 제어시스템은 강인제어가 요구되고 있다. 그러나 서보 제어시스템이 외란의 영향을 받게 되면 제어시스템의 강인제어는 어렵게 된다. 이에 대한 보완적인 한 방법으로 본 논문에서는 주 제어기(PID)와 미분 관리제어기의 혼합형 제어기법을 제시하였다. 주 제어기는 궤환제어기로서 동작하고, 미분 관리제어기는 외란에 의한 불안정한 상태에서 보조적인 동작을 한다. 미분 관리제어기의 강인성은 전통기의 속도제어에 의해서 확인하였다.

차분진화 알고리즘을 이용한 회전형 역 진자 시스템의 최적 퍼지 제어기 설계 (Design of Optimized Fuzzy Controller for Rotary Inverted Pendulum System Using Differential Evolution)

  • 김현기;이동진;오성권
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.407-415
    • /
    • 2011
  • In this study, we propose the design of optimized fuzzy controller for the rotary inverted pendulum system by using differential evolution algorithm. The structure of the differential evolution algorithm has a simple structure and its convergence to optimal values is superb in comparison to other optimization algorithms. Also the differential evolution algorithm is easier to use because it have simpler mathematical operators and have much less computational time when compared with other optimization algorithms. The rotary inverted pendulum system is nonlinear and has a unstable motion. The objective is to control the position of the rotating arm and to make the pendulum to maintain the unstable equilibrium point at vertical position. The output performance of the proposed fuzzy controller is considered from the viewpoint of performance criteria such as overshoot, steady-state error, and settling time through simulation and practical experiment. From the result of both simulation and practical experiment, we evaluate and analyze the performance of the proposed optimal fuzzy controller from the comparison between PGAs and differential evolution algorithms. Also we show the superiority of the output performance as well as the characteristic of differential evolution algorithm.

Fuzzy Controller of Three-Inertia Resonance System designed by Differential Evolution

  • Ikeda, Hidehiro;Hanamoto, Tsuyoshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권2호
    • /
    • pp.184-189
    • /
    • 2014
  • In this paper, a new design method of vibration suppression controller for multi-inertia (especially, 3-ineritia) resonance systems is proposed. The controller consists of a digital fuzzy controller for speed loop and a digital PI controller for current minor loop. The three scaling factor of the fuzzy controller and two PI controller gains are determined by Differential Evolution (DE). The DE is one of optimization techniques and a kind of evolutionary computation technique. In this paper, we have applied the DE/rand/1/bin strategy to design the optimal controller parameters. Comparing with the conventional design algorithm, the proposed method is able to shorten the time of the controller design to a large extent and to obtain accurate results. Finally, we confirmed the effectiveness of the proposal method by the computer simulations.

반도체 공정용 차압식 질량 유량 제어 장치의 개발 및 성능 평가 (Development and Evaluation of Differential Pressure Type Mass Flow Controller for Semiconductor Fabrication Processing)

  • 안진홍;강기태;안강호
    • 반도체디스플레이기술학회지
    • /
    • 제7권3호
    • /
    • pp.29-34
    • /
    • 2008
  • This paper describes the fabrication and characterization of a differential pressure type integrated mass-flow controller made of stainless steel for reactive and corrosive gases. The fabricated mass-flow controller is composed of a normally closed valve and differential pressure sensor. A stacked solenoid actuator mounted on a base-block is utilized for precise and rapid control of gas flow. The differential pressure flow sensor consisting of four diaphragms can detect a flow rate by deflection of diaphragm. By a feedback control from the flow sensor to the valve actuator, it is possible to keep the flow rate constant. This device shows a fast response less than 0.3 sec. Also, this device shows accuracy less than 0.1% of full scale. It is confirmed that this device is not attacked by toxic gas, so the integrated mass-flow controller can be applied to advanced semiconductor processes which need fine mass-flow control corrosive gases with fast response.

  • PDF

블럭펄스 함수를 이용한 기준 모델 적응 제어기 설계 (The Design of Model Reference Adaptive Controller via Block Pulse Functions)

  • 김진태;김태훈;이명규;안두수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권1호
    • /
    • pp.1-7
    • /
    • 2002
  • This paper proposes a algebraic parameter determination of MRA(Model Reference Adaptive Control) controller using block Pulse functions and block Pulse function's differential operation. Generally, adaption is performed by solving differential equations which describe adaptive low for updating controller parameter. The proposes algorithm transforms differential equations into algebraic equation, which can be solved much more easily inn a recursive manner. We believe that proposes methods are very attractive and proper for parameter estimation of MRAC controller on account of its simplicity and computational convergence.

속도 리플 억제를 위한 수정된 PID 속도 제어기의 설계 (Design of the Modified PID Speed Controller to Reduce the Speed Ripple)

  • 김홍민;추영배;이동희
    • 전력전자학회논문지
    • /
    • 제17권2호
    • /
    • pp.135-141
    • /
    • 2012
  • PMSM(Permanent Magnet Synchronous Motor) has periodic torque ripple from the cogging torque and load conditions. This paper proposes the modified PID speed controller to reduce the speed ripple of the PMSM. The proposed modified PID controller uses a selective D(Differential) control term according to the speed error and the differential of the speed error. The proposed speed controller produces an additional torque reference such as torque compensator based on PI controller according to the speed error and the differential of the speed error, and it can reduce the vibration of the conventional D-control term with reduced speed ripple. Since the additional torque reference of the proposed speed controller is changed by the sign of the speed error and the differential of the speed error, a simple function to determine the sign of the error is used to produce the compensated torque. The proposed control scheme is verified by the computer simulation and the experiments.

이동로봇을 위한 퍼지로직 제어기 (A fuzzy-logic controller for a differential-drive mobile robot)

  • 박영민;김대영;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.532-535
    • /
    • 1997
  • This paper describes the design of a fuzzy-logic controller for a differential-drive mobile robots. This controller uses absolute position information to modify control parameters to compensate the orientation error. CC-Control method is compensated for the internal error by wheel encoders and the fuzzy-logic control provides compensation for external errors. The validities of the proposed scheme is evaluated using simulation.

  • PDF

차온제어기의 On-Off 온도설정에 따른 태양열 시스템 열성능 (Thermal Performance of Solar Thermal System by On-Off Differential Temperature of Differential Temperature Controller)

  • 신우철;백남춘
    • 한국태양에너지학회 논문집
    • /
    • 제25권2호
    • /
    • pp.1-8
    • /
    • 2005
  • On-off differential controller is one of the very important components which affect the system performance of the active solar thermal system. In this study, analyses were made regarding the influence of "on-off" setting temperature on the system efficiency and on the electrical consumption by circulation pump. This study was performed by experiment as well as the computer simulation using TRNSYS program. The simulation system was developed in this study was verified the its reliability by the experimental results. As a results, the turn off temperature(${\Delta}T_{off}$) is much more influence than the turn on temperature(${\Delta}T_{on}$) on the system efficiency. It is more clear and sensitivity in winter season. Finally the optimum on-off setting value and the system on-off pattern according to the several different kind of system was also represented.

미분기하학 방법을 이용한 비선형 가변구조 제어기 설계 (Design of nonlinear variable structure controller using differential geometric methods)

  • 함철주;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1227-1233
    • /
    • 1993
  • In this paper we present the differential geometric approach for the analysis and design of sliding modes in nonlinear variable structure feedback systems. We also design the robust controller for the nonlinear system using variable structure control theory on the basis of differential geometric methods and feedback linearization applying Min-Max control based on the Lyapunov second method. The robustness against parameter uncertainties for robot manipulators with flexible joint is considered. Simulation results are presented and show the advantage of the proposed nonlinear control method.

  • PDF