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Fuzzy Controller of Three-Inertia Resonance System  

designed by Differential Evolution 
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Abstract – In this paper, a new design method of vibration suppression controller for multi-

inertia (especially, 3-ineritia) resonance systems is proposed. The controller consists of a digital 

fuzzy controller for speed loop and a digital PI controller for current minor loop. The three scaling 

factor of the fuzzy controller and two PI controller gains are determined by Differential Evolution 

(DE). The DE is one of optimization techniques and a kind of evolutionary computation technique. 

In this paper, we have applied the DE/rand/1/bin strategy to design the optimal controller 

parameters. Comparing with the conventional design algorithm, the proposed method is able to 

shorten the time of the controller design to a large extent and to obtain accurate results. Finally, we 

confirmed the effectiveness of the proposal method by the computer simulations. 
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1. Introduction 

 

 In recent years, high precision and fast response motor 

drive systems are widely used in many industrial 

applications (e.g. Steel Rolling Mill, Blue-ray Disc Drive, 

Hard Disk Drive, Robot Manipulator, Electrical Vehicle and 

etc.). Advances of the control theory and the actuator 

technology have made it possible to widen the bandwidth of 

the control system for faster responses. 

On the other hand, modern mechanical systems tend to 

lack stiffness due to miniaturization and weight reduction 

because constructions of those systems have become 

complicated. Therefore, the motor drive systems 

generally are multi-inertia systems with several inertia 

moments, gears and springs. It can be analyzed by an 

approximate 2-inerita system. More effective control 

methods to suppress vibrations of the 2-inertia resonance 

systems have been proposed: e.g. resonance ratio control, 

full state feedback control, coefficient diagram method 

(CDM), H∞ control method, Pole Placement Method and 

Fractional Order PIDk Control [1] - [3]. Ikeda, et al. have 

proposed a position control of the 2-inertia systems with the 

speed minor loop designed by the pole placement method 

[4]. 

To suppress the vibration and control precisely, however, 

the system has to be treated as a multi-inertia system 

(system more than 3-mass model). For example, in electric 

vehicle, the system of the drive-train is 4-mass system. Also, 

in ball-screw driven stage, the system is 4-mass system. 

Furthermore, the turbines-generator system has 12 mass 

and includes 11-eigen frequencies. Here, some researcher 

presented the vibration control methods for the multi-inertia 

system [5], [6]. We proposed a vibration suppression 

control method for the 3-inertia system using a modified-

IPD controller (Integral plus Proportional plus Derivative 

plus time lag of first order element) designed by Taguchi 

Method [7].  

On the other hand, these control methods, however, may 

not be able to achieve the required results, in case that both 

the system equation and the real parameters of the system 

are not known. Fuzzy controller is one technique to solve 

such a problem. 

Fuzzy controller is a nonmathematical control algorithm 

based on intuition and experience. This has been 

successfully applied in some applications such as a motor 

[8], [9].  

In this paper, we propose the design of the control 

method for the 3-inertia resonance system in order to 

suppress the torsional vibration. The proposed controller 

consists of a digital fuzzy controller for speed loop and a 

digital PI controller for current minor loop. The controller 

uses motor side variables (a motor angular speed and a 

motor armature current) only.  

The three scaling factors and two PI controller gains are 

determined by Differential Evolution algorithm (DE) [10]-

[13]. The DE method proposed by Storn and Price proved 
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to be a powerful global optimization technique. The DE 

makes it possible to give quick search of the required 

scaling factors and control gains and as a result to obtain 

the accurate control results.  

Finally, the effectiveness of the proposal method is 

confirmed by the computer simulations.  

 

2. 3-Inertia Vibration Suppression Control System 

 

2.1 3-Inetia Model 

 

The 3-inertia model, which consists of three rigid inertias 

with two torsional shafts, is shown in Fig. 1, where M is 

the angular speed of the motor, c is the angular speed of 

load 1, L is the angular speed of load 2, Tin is the input 

torque, TL is the disturbance torque, JM is the motor inertia, 

Jc is the inertia of load 1, JL is the inertia of load 2, T1 is the 

torsional torque of shaft 1, T2 is the torsional torque of shaft 

2, Ks1 is the stiffness of shaft 1 and Ks2 is the stiffness of  

shaft 2. In this research, we consider the current loop for the 

high speed torque control. And we have neglected the 

viscous frictions. 

The system parameters used in this paper are listed in 

Table 1. Here, these parameters are expressed by nominal 

values which are normalized. Fig. 2 shows the frequency 

response of the nominal 3-mass model. Two peaks of gain 

characteristic are observed. In this figure, these frequencies 

of the peaks are the resonance frequencies. The purpose of 

the vibration suppression control is to reduce these peaks. 

The continuous state equation of the 3-mass model is given 

by equation (1). 

 

Motor Load 1 Load 2

Shaft 1 Shaft 2

Ks1 Ks2

M c
L

JM Jc JL

T1 T2

TL

Tin

 
 

Fig. 1. 3-Inertia Model 

 

Table 1. Nominal Parameters of 3-Inertia Model 

Characteristics Specification 

Inertia Moment of Motor JM 3.645x10
-5

 [kgm
2
] 

Inertia Moment of Load 1 Jc 6.920x10
-5

 [kgm
2
] 

Inertia Moment of Load 2 JL 3.18x10
-5

 [kgm
2
] 

Stiffness of Shaft 1 Ks1 64.3 [Nm/rad] 

Stiffness of Shaft 1 Ks2 80.4 [Nm/rad] 

 
 

Fig. 2. Frequency Response of 3-Ineritia Model 
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From the above equation of the 3-inertia model, the 

transfer function of the Tin to M is obtained below. 

 

      
  
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1 2

a aM

in M r r

s s
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

 

         (2) 

 

Where, r1 and r2 are resonance frequencies and a1 and 

a2 are anti-resonance frequencies. The resonance 

frequencies of the nominal model in this paper are 

 

 1 2

1 2

=2070.0 [rad/sec] , =1419.2 [rad/sec] 

=1990.7 [rad/sec] , =757.3 [rad/sec] 

r r

a a

 

 
   (3) 

 

Here, we assume that the driving motor is dc motor. Table 2 

show the nominal parameters of the armature circuit of the 

dc motor. Fig. 3 shows the block diagram of the 3-inertia 

system including the armature current loop. 

 

Table 2. Specification of DC Motor 

Characteristics Specification 

Armature Resistance Ra 1.6 [] 

Armature Inductance La 6.0 [mH] 

Back EMF Constant Ke 0.264 [Vsec/rad] 

Torque Constant Kt 0.264 [Nm/A] 

Converter Gain K0 25 [V/pu] 
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Fig. 3. Block Diagram of 3-Inertia Model 

 

2.2 Fuzzy Controller 

 

The fuzzy control is able to successfully apply to control 

nonlinear complex systems using an operator experiences 

or control engineering knowledge without any 

mathematical model of the plant. The fuzzy controller is 

designed for the model shown in Fig. 4. The control system 

consists of the fuzzy speed controller and the current PI 

controller, where S1, S2 and S3 are the scaling factors of the 

fuzzy controller. And the current PI controller has two 

controller gains (Kpc and Kic). Furthermore, considering the 

application to the experimental apparatus, we construct the 

digital control system which has discrete controller. 

If all parameters and state variables are known, it is 

possible to design the desired closed-loop system poles to 

any position on the S plane. But the load side variables are 

hard to be measured in general, because of bad environment 

and sometimes narrow space. 

 We propose the vibration suppression control method, 

which needs no information about the load side variables, 

namely load 1 angular speed c, load 2 angular speed L, 

torsional torque 1 T1 and torsional torque 2 T2. In this paper, 

only the motor angular speed M and the armature current ia 

are observable. 
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Fig. 4. Block diagram of the proposed controller 
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Fig. 5. Membership functions of the antecedence 

 

s
3

1
s

3

2
 0 s

3

1
s

3

2 ss

NB NM NS ZE PS PM PB

 
 

Fig. 6. Membership functions of the consequence 

 

Here, we apply the triangular membership function for 

the antecedence and the consequence variables. The 

membership function of the antecedence and the 

consequence are illustrated in Fig. 5 and 6, respectively. 

Where, the s is the scaling factor, PB: Positive Big, NB: 

Negative Big, PM: Positive Medium, NM: Negative 

Medium, PS: Positive Small, NS: Negative Small and ZE: 

Zero. The antecedence variables eM (k) and DeM(k) are 

defined as, 

    ( ) ( )
M ref Me k k                (4) 

 

    ( ) ( 1)
M M Me k k  D              (5) 

 

Then, the consequence variable is the variation width of 

the torque input DTin (k). The control rule table is shown in 

Fig. 7. The rule is included the rising correction of the 

angular speed response. 
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Fig. 7. Control rule table 
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3. Determination of Controller Parameters by 

Differential Evolution 
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Fig. 8. Flow of DE algorithm 

 

In general, since determinations of the scaling factors and 

the PI controller gains are a rule of thumb, it takes a long 

time to determine these factors by trial and error or some 

other methods. In this paper, we apply the DE for the 

determination of five design parameters (S1, S2, S3, Kpc and 

Kic).  

DE algorithm is one of the evolutionary algorithms [10]-

[13]. Unlike simple GA that uses binary coding for 

representing problem parameters, DE uses real-valued 

vectors. The crucial idea behind DE is a scheme for 

generating trial parameter vectors. 

The design procedure using the DE consists of 4 steps 

(Initial Population, Mutation, Crossover and Selection). Fig. 

8 shows the flow of DE algorithm. 

There are several variants of DE design. In this paper, we 

utilize the DE combination DE/rand/1/bin strategy. 

A set of D optimization parameters is called an 

individual. It is represented by D-dimensional parameter 

vector. A population consists of NP parameter vector xi,G. 

Where, i=1, 2, …, NP, NP denotes the number of members 

in one population and G indicates one generation. We have 

one population for each generation. Here, the initial 

population vector is determined randomly. 

In this DE optimization, F is the scaling factor and CR is 

the crossover rate. The scaling factor F works for creating a 

mutation vector vi,G. For each target vector xi,G, the 

mutation vector vi are generated according to 

 

 1, 2, 3, 1 2 3, 1i r G r G r GG
F r r r i


     v x x x     (6) 

 

Where, r1, r2 and r3 are distinct. In the crossover, the target 

vector xi,G mixed with the mutation vector vi,G+1, using 

following scheme for j = 1, 2, … D,  

 

, 1

, 1

,

, if () or =start point

, if ()> or start point

ji G

ji G

ji G

v rand CR j
u
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


 



    (7) 

 

ui,G+1 is the trial vector. rand() is the jth evaluation of 

uniform random generator number. The start point (1, 2, … 

D) is a randomly chosen index which ensures that ui,G+1 gets 

at least one element from vi,G+1. 

A selection algorithm is utilized  
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for j = 1, 2, …, D. 

 

In this paper, the number of problem dimension is five 

(S1, S2, S3, Kpc and Kic), the population size is 200, the 

scaling factor F is 0.5 and the crossover rate CR is 0.9. 

Equation (9) is the index function, where M is the motor 

angular speed and ref is the angular speed reference 

command which is the shape of the step response of the 

second lag element.  

 

0
( )ref My t k dt 



              (9) 

 

 

4. Simulation Results 

 

In this section, we verify the validity of the proposed 

method. And all simulation is executed by MATLAB / 

Simulink. Fig. 9 shows the transitions of the S1 vector, 

where each parameter has 13 individuals.  Fig. 10 shows 

the convergence of the maximum index function y.  
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Fig. 11 shows the responses using the conventional PI 

controller. Here, the disturbance torque input TL is changed 

from 0 to 10 [%] at t = 0.3 [sec]. From this figure, all the 

angular speed (the motor angular speed M, the load 1 

angular speed c and the load 2 angular speed L) are 

observed the transient errors. Then, the speed is oscillating 

after the torque input. And the controller performance of the 

speed control has been slow. 

Fig. 12 shows the responses using the proposed method. 

It is observed that the speed errors reduced very well and 

the vibration suppressed well. Moreover, the effect of 

disturbance torque input was found to be insignificant. Fig. 

13 shows the load 2 angular speed L including the error of 

the nominal inertia value. And Fig. 14 shows the L 

including the error of the nominal stiffness of the shaft. 

From these figure, the control algorithm work well up to a 

certain extent, regardless of the variation in the load inertia 

and the stiffness of the shaft. Thus the results show that the 

proposed method has the effectiveness for the vibration 

suppression and the high robustness. 

 

 

 

 

Fig. 9. Transition of Scaling Factor S1 

 

 

 

Fig. 10. Convergence of Index Function y 

 

 

Fig. 11. Simulation Results Using Conventional PI 

Controller 
 

 

 

 

Fig. 12. Simulation Results Using Proposed Method 
 

 

 

 

Fig. 13. Load 2 Angular Speed Including Load Inertia 

Errors 
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Fig. 14. Load 2 Angular Speed Including Stiffness Errors 

 

5. Conclusion 

 

In this paper, we proposed the vibration suppression 

controller for multi-inertia system using the fuzzy speed 

controller and the current PI controller. Then, the five 

controller design parameters were determined by the DE to 

design quickly. We confirmed the effectiveness of the 

controller structure by the computer simulations. The topic 

of our future researches is to investigate the robustness of 

the fuzzy controller and the influence of gear backlash of 

the proposed method. 
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