• Title/Summary/Keyword: Differential Bobbin Coil

Search Result 5, Processing Time 0.017 seconds

Simulation of ECT Bobbin Coil Probe Signals to Determine Optimum Coil Gap

  • Kong, Young-Bae;Song, Sung-Jin;Kim, Chang-Hwan;Yu, Hyung-Ju;Nam, Min-Woo;Jee, Dong-Hyun;Lee, Hee-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.403-410
    • /
    • 2006
  • Eddy current testing (ECT) signals produced by a differential bobbin coil probe vary according to probe design parameters such as the number of turns, geometry and coil gap size. In the present study, the characteristics of a differential bobbin coil probe signals are investigated by numerical simulation in order to determine the optimum coil gap. For verification of numerical simulation accuracy, a specially designed bobbin probe of which the coil gap can be adjusted is fabricated and a series of experiments to acquire signals from two kinds of standard tubes with the variation in coil gap is performed. Then, the experimental signals are compared to the simulation results. Based on this investigation, a decision on the optimum range of coil gap is made. The theoretically predicted signals agree very well to the experimental signals. In fact, this excellent agreement demonstrates a high potential of the simulation as a design optimization tool for ECT bobbin probes.

A Study on Electrical Characteristics for Coil Winding Number Changes of Eddy Current Bobbin Coil for Steam Generator Tubes in NPPs (원전 증기발생기 전열관 와전류검사용 보빈코일의 권선 수 변화에 대한 전기적 특성 연구)

  • Nam, Min-Woo;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.64-70
    • /
    • 2012
  • Two kinds of eddy current probes are mainly used to perform the steam generator tube integrity assesment in NPPs. The first one is the bobbin probe using for inspection of volumetric defect like a fretting wear. The second one is the rotating probe using for inspection of non-volumetric defect like a crack. The eddy current probe is one of the essential components which consist of the whole eddy current examination system, and provides a decisive data for the tube integrity in accordance with acceptance criteria described in specific procedures. The design of ECT probe is especially important to improve examination results because the quality of acquired ECT data is depended on the probe design characteristics, such as coil geometry, electrical properties, operation frequency. In this study, it is analyzed that the coil winding number of differential bobbin probe affects the electrical properties of the probe. Eddy current bobbin probes for the steam generator tubes in NPPs are designed and fabricated according to the results. Experiment shows that the change in coil winding number has much effects on the optimum inspection frequency determined by the tube geometry and material. Therefore, the coil winding number in bobbin probe is very important in the probe design. In this study, a basis of the coil winding number for the eddy current bobbin probe design for steam generator tubes in NPPs is established.

Eddy Current Sensor Development for Offshore Pipeline NDT Inspection (해양파이프라인 비파괴검사를 위한 와전류 센서 개발)

  • Lee, Seul-Gi;Song, Sung-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • Regular high-strength carbon steel is currently the most commonly used pipe material for onshore and offshore pipelines. The corrosion of offshore pipelines is a major problem as they age. The collapse of these structures as a result of corrosion may have a heavy cost is lives and assets. Therefore, their monitoring and screening is a high priority for maintenance, which may ensure the integrity and safety of a structure. Monitoring risers and subsea pipelines effectively can be accomplished using eddy current inspection to detect the average remaining wall thickness of corroded low-alloy carbon steel pipelines through corrosion scaling, paint, coating, and concrete. A test specimen for simulating the offshore pipeline is prepared as a standard specimen for an analysis and experiment with differential bobbin eddy current sensors. Using encircling coils, the signals for the defect in the simulated specimen are analyzed and evaluated in experiments. Differential bobbin eddy current sensors can diagnose the defects in a specimen, and experiments have been carried out using the developed bobbin eddy current sensor. As a result, the most optimum coil parameters were selected for designing differential bobbin eddy current sensors.

Eddy Current Bobbin Probe Design for Steam Generator Tubes in NPPs (원전 증기발생기 전열관 와전류검사 보빈탐촉자 설계)

  • Nam, Min-Woo;Lee, Hee-Jong;Jee, Dong-Hyun;Jung, Jee-Hong;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.89-96
    • /
    • 2007
  • The bobbin probe examination is basic and the important method among other ECT techniques for the steam generator tube integrity assesment that is practiced during each plant outage. The bobbin probe is one of the essential components which consist of the whole ECT examination system, and provides us a decisive data for the evaluation of tube integrity in compliance with acceptance criteria described in specific procedures. The selection of examination probe is especially important because the quality of acquired ECT data is determined by the probe design characteristics, such as geometry and operation frequency, and has enormous effects on examination results. In this study, An optimal differential bobbin probe is designed for the steam generator tube inspection in nuclear power plants(NPPs). Based on the test results for electrical and ECT signal characteristics, the prototype bobbin probe satisfies all the criteria.

Detectability and Sizing Ability of Rotating Pancake Coil Technique for Cracks in Steam Generator Tubes

  • Y. M. Cheong;K. W. Kang;Lee, Y. S.;T. E. Chung
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.377-385
    • /
    • 1998
  • Many nuclear power plants have experienced unscheduled shutdown due to the leakage of steam generator tubes. The leakages are normally due to the crack, possibly stress corrosion cracking (SCC) near the tube expansion at the top of tubesheet or at the tangential point of the row-1 U-bend region. The conventional eddy current technique, which makes use of a differential bobbin coil, has been found to be inadequate for the early detection of SCC. During the in-service inspection, therefore, it is a general practice that the rotating pancake coil (RPC) is used for detecting the cracks. Even in using RPC, however, it is difficult to determine the depth of the cracks quantitatively. This paper attempts to determine the detectability and sizing ability of RPC technique for axial or circumferential cracks at the tube expansion region. The simulated cracks with various dimensions were fabricated by electro-discharge machining (EDM) method. Experimental results are discussed with theoretical calculations.

  • PDF