• Title/Summary/Keyword: Different material

Search Result 9,724, Processing Time 0.041 seconds

Friction Characteristics of Non-Asbestos Organic (NAO) and Low-Steel Friction Materials: The Comparative Study

  • Kim, Seoun Jin;Jang, Ho
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Eviction characteristics of two typical friction materials (non-asbestos organic and low-steel friction materials) for an automotive brake system were investigated using an inertial brake dynamometer. In particular, the effect of sliding speed on friction coefficient was carefully investigated employing various test modes. The two friction materials were developed for commercial applications and were different mainly in the type and the amount of metallic ingredients in the friction material. The dynamometer test showed that the low-steel friction material was sensitive to the sliding speed exhibiting a negative $\mu$-v relation. On the other hand, the non-asbestos organic friction material was less sensitive to the sliding speed. The low steel friction materials with a negative $\mu$-v relation also induced larger vibration amplitude during brake applications.

  • PDF

A Study on the Selection of Core Materials in Motors according to Operating Speed Range (전동기 주 운전 영역에 따른 코어 재질 선정에 관한 연구)

  • Lee, Byeong-Hwa;Lee, Sang-Ho;Hong, Jung-Pyo;Ha, Kyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.791-792
    • /
    • 2006
  • In motor design, an important factor is the content of silicon in coss material, which can effect the saturation of magnetic circuit and coss loss. While the content of silicon is high, the core loss will be reduced. At the same time, in order to assure the effective flux, the magnetizing current must be increased and then the copper loss becomes higher. Therefore the material with high content of silicon, which is used in the motor, can not always give the high efficiency. In this paper flux linkage of two different material s10 and s60 is compared according to the operating region and then exciting current to obtain same flux is estimated. By comparing core loss and copper loss between two material with the estimated current and flux linkage, this paper presents a criterion in determining the material for higher efficiency

  • PDF

Determination of Material Parameters for Microstructure Prediction Model Based on Recystallization and Grain Growth Behaviors (재결정 및 결정립 성장거동을 기초한 조직예측 모델에 대한 변수 결정방법)

  • Yeom, J.T.;Kim, J.H.;Hong, J.K.;Park, N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.270-273
    • /
    • 2009
  • This work describes a method of determining material parameters included in recrystallization and grain growth models. Focus is on the recrystallization and grain growth models of Ni-Fe base superalloy, Alloy 718. High temperature compression tests at different strain, strain rate and temperature conditions were chosen to determine the material parameters of dynamic recrystallization model. The critical strain and dynamically recrystallized grain size and fraction at various process variables were quantitated with the microstructual analysis and strain-stress relationships of the compression tests. Besides, isothermal heat treatments were utilized to fit the material constants included in the grain growth model. Verification of the determined material parameters is carried out by comparing the measured data obtained from other compression tests.

  • PDF

Microencapsulation of Anchovy Oil by Sodium Alginate (알긴산소다를 이용한 멸치어유의 미세캡슐화)

  • 임상빈;좌미경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.890-894
    • /
    • 1999
  • Microencapsulation of anchovy oil as a core material in sodium alginate as a wall material was inves tigated. Microencapsulation was accomplished by injecting an oil/water emulsion, consisting of a mixture of liquefied sodium alginate and emulsifier, under high pressure through an orifice submerged in a calcium lactate solution. Microcapsules suspended in a dispersion fluid were observed under a fluorescence mi croscope to verify the presence of the capsules and to note coalescence or degradation of the capsules. Optimum conditions for microencapsulation of anchovy oil were obtained when 1.0% aqueous solution of sodium alginate contained 3% of a 1:1 ratio of ESPR 25(polyglycerine+polylinoleate) and TW 20(sorbitan laurate+ethylene oxide) as an emulsifier in terms of capsule size and size distribution, and emulsion stability. The airless sprayer produced microcapsules with a diameter between 15.9 and 73.9 m with different concentration of a wall material. The optimum mixing ratio of wall material to core material was 90:10(wt/wt). 0.2% calcium lactate was appropriate as a dispersion fluid.

  • PDF

Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.373-389
    • /
    • 2015
  • The development of a finite element model for the geometric and material nonlinear analysis of bonded prestressed concrete continuous beams is presented. The nonlinear geometric effect is introduced by the coupling of axial and flexural fields. A layered approach is applied so as to consider different material properties across the depth of a cross section. The proposed method of analysis is formulated based on the Euler-Bernoulli beam theory. According to the total Lagrangian description, the constructed stiffness matrix consists of three components, namely, the material stiffness matrix reflecting the nonlinear material effect, the geometric stiffness matrix reflecting the nonlinear geometric effect and the large displacement stiffness matrix reflecting the large displacement effect. The analysis is capable of predicting the nonlinear behaviour of bonded prestressed concrete continuous beams over the entire loading stage up to failure. Some numerical examples are presented to demonstrate the validity and applicability of the proposed model.

A Study on the Evaluation Method of Water Leakage Repair in Polyacrylic Resin (폴리 아크릴 레진의 누수 보수 평가에 관한 연구)

  • Cho, Il-Kyu;Kim, Keun-Hur;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.223-224
    • /
    • 2017
  • In this study, various materials such as epoxy material, urethane material, cement material, and acrylic material are used to solve the water leakage occurring in underground structures. However, in the reality that the durability is insufficient and the effect is insufficient, it is aimed to improve the repairing effect by using cement and acrylics in combination. As a first study, we tried to verify the performance of improve the performance by checking the product properties according to the composition ratio of polyacrylic resin. Polyacrylic resin is evaluated in three different composition ratios. When the material is selected for polyacrylic resin, it is applied to the field to understand the maintenance effect and durability.

  • PDF

Electrochemical Properties of Carbonized Phenol Resin (탄화된 페놀레진의 전기화학적 성질)

  • 김한주;박종은;홍지숙;류부형;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.629-632
    • /
    • 1999
  • For replacing Li metal ai Lithium ton Bakery(LIB) system. we used carbon powder material which prepared by pyrolysis of phenol resin as starting material. It became amorphous carbon by pyrolysis through it\`s self condensation by thermal treatment. Amorphous carbon can be doped with Li intercalation and deintercalation because it has wide interlayer. however it has a problem with structural destroy causing weak carbon-carbon bond. So. we used ZnCl$_2$ as the pore-forming agent. This inorganic salt used together with the resin serves not only as the pore-forming agent to form open pores, which grow Into a three-dimensional network structure in the cured material, foul also as the microstructure-controlling agent to form a loose structure dope with bulky dopants. We analyzed SEM in order to find to different of structure. and can calculate distance of interlayer. CV test showed oxidation and reduction

  • PDF

Forced vibration analysis of functionally graded sandwich deep beams

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • This paper presents forced vibration analysis of sandwich deep beams made of functionally graded material (FGM) in face layers and a porous material in core layer. The FGM sandwich deep beam is subjected to a harmonic dynamic load. The FGM in the face layer is graded though the layer thickness. In order to get more realistic result for the deep beam problem, the plane solid continua is used in the modeling of The FGM sandwich deep beam. The equations of the problem are derived based the Hamilton procedure and solved by using the finite element method. The novelty in this paper is to investigate the dynamic responses of sandwich deep beams made of FGM and porous material by using the plane solid continua. In the numerical results, the effects of different material distributions, porosity coefficient, geometric and dynamic parameters on the dynamic responses of the FGM sandwich deep beam are investigated and discussed.

Exact thermoelastoplastic analysis of FGM rotating hollow disks in a linear elastic-fully plastic condition

  • Nadia Alavi;Mohammad Zamani Nejad;Amin Hadi;Anahita Nikeghbalyan
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.377-389
    • /
    • 2024
  • In the present study, thermoelsatoplastic stresses and displacement for rotating hollow disks made of functionally graded materials (FGMs) has been investigated. The linear elastic-fully plastic condition is considered. The material properties except Poisson's ratio are assumed to vary in the radial direction as a power-law function. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the disk. The plastic model is based on the Tresca yield criterion and its associated flow rules under the assumption of perfectly plastic material behavior. Exact solutions of field equations for elastic and plastic deformations are obtained. It is shown that the elastoplastic response of the functionally graded (FG) disk is affected notably by the radial variation of material properties. It is also shown that, depending on material properties and disk dimensions, different modes of plastic deformation may occur.

Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components (고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구)

  • Kim, Wan-Doo;Kim, Wan-Soo;Kim, Dong-Jin;Woo, Chang-Soo;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.