• Title/Summary/Keyword: Different Material

Search Result 9,655, Processing Time 0.035 seconds

The effects of custom tray material on the accuracy of master cast reproduction

  • Kim Hyun-Kyung;Chang Ik-Tae;Heo Seong-Joo;Koak Jai-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.282-296
    • /
    • 2001
  • The accuracy of master cast reproduction by a polyvinylsiloxane impression material using two visible-light curing resin and autopolymerizing polymethyl methacrylate resin custom tray material was investigated. Custom trays were fabricated from a master cast that had three index points marked on both inner and outer vestibules and then poured in yellow stone. The distance between the reproduced index points were measured to be ${\pm}0.001mm$ with a measuring microscope and the algebraic norms calculated for each tray material. No differences were found in the algebraic norms of inner and outer dimensions for upper tray impressions by ANOVA(p>0.05). However, T-test revealed that there were differences between upper and lower impressions and Tukey's hsd test revealed that in lower tray impressions, the Palatray in inner, the Lightplast in outer dimensions respectively were different from other materials. The index points reproduced on the casts compared with the master cast, were closer together for upper tray impressions. All four tray materials produced acceptable casts, 1. Algebraic norms of inner and outer dimensions of the test casts for upper trays were not statistically different irrespective of materials.(P>0.05) 2. T-test showed that there were differences between means with upper and lower trays especially in outer dimension.(P>0.05) 3. But, algebraic norms of inner and outer dimensions of the test casts for lower trays were statistically different between materials. 4. Palatray XL in inner, Lightplast-platten in outer dimensions respectively for lower trays were different from other materials, but, the nearest to the original model.

  • PDF

Aspects of size effect on discrete element modeling of normal strength concrete

  • Gyurko, Zoltan;Nemes, Rita
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.521-532
    • /
    • 2021
  • Present paper focuses on the modeling of size effect on the compressive strength of normal concrete with the application of Discrete Element Method (DEM). Test specimens with different size and shape were cast and uniaxial compressive strength test was performed on each sample. Five different concrete mixes were used, all belonging to a different normal strength concrete class (C20/25, C30/37, C35/45, C45/55, and C50/60). The numerical simulations were carried out by using the PFC 5 software, which applies rigid spheres and contacts between them to model the material. DEM modeling of size effect could be advantageous because the development of micro-cracks in the material can be observed and the failure mode can be visualized. The series of experiments were repeated with the model after calibration. The relationship of the parallel bond strength of the contacts and the laboratory compressive strength test was analyzed by aiming to determine a relation between the compressive strength and the bond strength of different sized models. An equation was derived based on Bazant's size effect law to estimate the parallel bond strength of differently sized specimens. The parameters of the equation were optimized based on measurement data using nonlinear least-squares method with SSE (sum of squared errors) objective function. The laboratory test results showed a good agreement with the literature data (compressive strength is decreasing with the increase of the size of the specimen regardless of the shape). The derived estimation models showed strong correlation with the measurement data. The results indicated that the size effect is stronger on concretes with lower strength class due to the higher level of inhomogeneity of the material. It was observed that size effect is more significant on cube specimens than on cylinder samples, which can be caused by the side ratios of the specimens and the size of the purely compressed zone. A limit value for the minimum size of DE model for cubes and cylinder was determined, above which the size effect on compressive strength can be neglected within the investigated size range. The relationship of model size (particle number) and computational time was analyzed and a method to decrease the computational time (number of iterations) of material genesis is proposed.

Evaluating effects of various water levels on long-term creep and earthquake performance of masonry arch bridges using finite difference method

  • Cavuslu, Murat
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.31-52
    • /
    • 2022
  • Investigating and evaluating the long-term creep behavior of historical buildings built on seismic zones is of great importance in terms of transferring these structures to future generations. Furthermore, assessing the earthquake behavior of historical structures such as masonry stone bridges is very important for the future and seismic safety of these structures. For this reason, in this study, earthquake analyses of a masonry stone bridge are carried out considering strong ground motions and various water levels. Tokatli masonry stone arch bridge that was built in the 10th century in Turkey-Karabük is selected for three-dimensional (3D) finite difference analyses and this bridge is modeled using FLAC3D software based on the three-dimensional finite difference method. Firstly, each stone element of the bridge is modeled separately and special stiffness parameters are defined between each stone element. Thanks to these parameters, the interaction conditions between each stone element are provided. Then, the Burger-Creep and Drucker-Prager material models are defined to arch material, rockfill material for evaluating the creep and seismic failure behaviors of the bridge. Besides, the boundaries of the 3D model of the bridge are modeled by considering the free-field and quiet boundary conditions, which were not considered in the past for the seismic behavior of masonry bridges. The bridge is analyzed for 6 different water levels and these water levels are 0 m, 30 m, 60 m, 70 m, 80 m, and 90 m, respectively. A total of 10 different seismic analyzes are performed and according to the seismic analysis results, it is concluded that historical stone bridges exhibit different seismic behaviors under different water levels. Moreover, it is openly seen that the water level is of great importance in terms of earthquake safety of historical stone bridges built in earthquake zones. For this reason, it is strongly recommended to consider the water levels while strengthening and analyzing the historical stone bridges.

A Study on the Structural Integrity of Transportable Heavy-duty Tracking-mount (이동형 대하중 추적 마운트의 구조 건전성에 대한 연구)

  • Kim, Byung In;Son, Young Soo;Park, Cheol Hoon;Lee, Sung Hwi;Ham, Sang Yong;Jo, Sang Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.879-885
    • /
    • 2013
  • Satellites provide a lot of information and essay roles in the areas of defense and space observations. The precise distances to the satellites are measured by emitting and retro-reflecting a laser. For such surveys, satellite laser ranging (SLR) systems have been developed in different forms and for different areas. The structural integrity of the tracking mount is essential for it to be able to track a high-speed satellite precisely, overcoming the various external and internal disturbances and operating conditions. In this study, the analysis of a tracking mount was performed for weight, wind loads, and inertia loads in order to verify its soundness. The results of the comparison between aluminum and steel were analyzed in order to select the optimal material for the fork and main housing part. In addition, the natural frequency and mode shape were predicted. Optimal material selection and structural integrity will also be verified using static analysis.

Effect of the Shoulder Pad on Arm Movement -In the Area of Functionality and Sensory (팔동작에 미치는 어깨패드의 영향에 관하여 -심미성과 기능성을 중심으로-)

  • 이은정
    • The Research Journal of the Costume Culture
    • /
    • v.6 no.2
    • /
    • pp.66-76
    • /
    • 1998
  • In order to investigate the effect of shoulder pad affecting the arm movement, eleven women volunteers of standard body whose age is from eighteen to twenty-four(x±1σ) were chosen and this experiment had done according to front-vertical motion, side-vertical motion and horizontal motion of upper limps for tow different materials of shoulder pad(sponge, non-woven) and four different thickness of shoulder pad(0.6cm, 0.8cm, 1.2cm). On the base of this, this study, when putting on shoulder pad, try to find the reform method of shoulder part pattern. The results are as follows. 1. When puting on shoulder pad to blouse pattern to rise shoulder pad for rate of two-third per thickness is seemingly the best for sensory evaluation. So, when putting on shoulder pad, we understand that in order to improve sensory evaluation. So, when putting on shoulder pad, we understand that in order to improve sensory evaluation of clothes, when that, rising shoulder pad for ate of two-third per thickness is the best. 2. From the results of measure of functional volume and physiological value for functionality evaluation according to thickness and material, motion of shoulder pad, 1.2 cm thickness and non-woven material is evaluated the worst for functionality. 3. From the results of sensory evaluation and functionality evaluation of material of shoulder pad, sponge material is superior for functionality but not for sensory evaluation, non-woven material is superior for sensory evaluation non-woven material is superior for sensory evaluation but not for functionality. So, think that it had better use sponge material for functional clothes, non-woven material for aesthetical clothes. 4. From the results of functionality of clothes, when putting on shoulder pad, the worst discomfortable parts are the armpit part and the shawl part, functionality of these part shoulder be reformed.

  • PDF

The Expression of Texture Applying the Cotton Fabrics of Woolsmok Technique - Comparison of the Works Using the Rolltechnique and the Washing Machine - (울스모크(Woolsmok)기법에 의한 면직물에 응용된 질감표현 - 롤테크닉과 세탁기 작업에 의한 비교 -)

  • Oh, Yean-Ok
    • Fashion & Textile Research Journal
    • /
    • v.6 no.2
    • /
    • pp.163-168
    • /
    • 2004
  • The domestic textile industry is currently making an active effort to present high value-added materials that can respond immediately to the wants and needs of consumers sensitive to the of originality of design and emotionally appealing fashion materials. This paper attempted to present the creative development of materials in the contemporary clothing culture in which consumers' needs are individualized and differentiated and the cycle of life in fashion materials is getting shorter. To be specific, the paper presented the texture of peculiar expression to diverse cotton materials using the Woolsmok technique in the processing of felt. The chosen Merino wool was felted to 8 kinds of cotton with different density and structure. The touch, texture, visibility and complex susceptibilities of new materials were presented as different materials of cotton and wool were transformed into one material. In felting cotton fiber through wool, the transformation of diverse textures was presented and compared in the method using the washing machine in an attempt to enhance the efficiency of the traditional craft technique and work. This study proposed the possibility of placing the new material made up of cotton and wool beyond the range of functionality of each simple material, activating it as the peculiar material and expanding it to the range of its use as fashion material in the clothing industry. It is expected that this material will become competitive material at home and abroad by being activated as the clothing material of artistry, workability and marketability that can satisfy the tastes of consumers who call for high quality and diversification.

Effects of Material Properties and Fabric Structure Characteristics of Graduated Compression Stockings (GCS) on the Skin Pressure Distributions

  • Liu Rong;Kwok Yi-Lin;Li Yi;Lao Terence-T;Zhang Xin
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.322-331
    • /
    • 2005
  • Graduated compression stockings (GCS) have been widely used for the prophylaxis and treatment of venous diseases. Their gradient pressure function largely related to their fabric structure and material properties. By combing fabric physical testing and wear trials, this study investigated the GCSs fabric structure and material properties at different locations along the stocking hoses, and quantitatively analyzed the effects of fabrics on skin pressure longitudinal and transverse distributions. We concluded that, Structural characteristics and material properties of stocking fabrics were not uniform along the hoses, but a gradual variation from ankle to thigh regions, which significantly influenced the corresponding skin pressure gradient distributions; Tensile (WT, EM) and shearing properties (G) generated most significant differences among ankle, knee and thigh regions along the stocking hose, which significantly influenced the skin pressure lognitudinal gradient distribution. More material indices generating significant gradual changes occurred in the fabric wale direction along stocking hose, meaning that materials properties in wale direction would exert more important impact on the skin pressure gradient performances. And, the greater tensibility and smoother surface of fabric in wale direction would contribute to put stocking on and off, and facilitate wearers' leg extension-flexion movements. The indices of WT and EM of stocking fabrics in series A have strong linear correlations with skin pressure lognitudinal distribution, which largely related to their better performances in gradual changes of material properties. Skin pressure applied by fabric with same material properties produced pronounced differences among four different directions around certain cross-sections of human leg, especially at the ankle region; and, the skin pressure magnitudes at ankle region were more easily influenced by the materials properties, which were considered to be largely related to the anatomic structure of human leg.

Comparison of Cryoprotectants and Cryopreservation Protocols for Eleutherococcus senticosus via Somatic Embryogenesis

  • Ahn, Chang Ho;Shin, Jung Won;Lee, Ha Na;Yoon, Hyun Won;Seo, Jeong Min;Kim, Yeoung Ryul;Baek, Saeng Geul;Nam, Jae Ik;Choi, Yong Eui
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.3
    • /
    • pp.152-158
    • /
    • 2022
  • A cryopreservation is an essential tool for preservation of germplasm. In this study, the possibility for cryopreservation of embryogenic cells of Siberian ginseng (Eleutherococcus senticosus) in liquid nitrogen (-196℃) was evaluated. The effects of glycerol and dimethyl sulfoxide (DMSO) at different concentrations (5%, 10% and 20%) as cryoprotectants on regrowth of cryopreserved E. senticosus embryogenic cells were tested. There was significant effect of cryoprotectants on regrowth of embryogenic cells (p=0.0019). The highest and lowest fresh mass gain were achieved when embryogenic cells were frozen with 10% DMSO and 5% glycerol (138.2±5.9 and 61.3±14.6, respectively). The effect of the cryoprotectants on the frequency embryo germination was tested. There was no significant difference between glycerol and DMSO (p=0.846). Three different concentrations of cryoprotectants did not significantly affect the frequency embryo germination (p=0.534). Finally, the genetic fidelity of the plantlets regenerated from non-cryopreserved and cryopreserved embryogenic cells was tested by random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analysis. RAPD and ISSR analysises showed that there was no genetic variation among regenerants.

A Study on the Metaphorical Expression Characteristics of New Materials for Emotional Housing Space Design (감성주거공간디자인을 위한 신소재의 은유적 표현 특성에 관한 연구)

  • Jung, Sun-Hee;Seo, Ji-Eun
    • Journal of the Korean housing association
    • /
    • v.23 no.3
    • /
    • pp.71-78
    • /
    • 2012
  • This study analyzed metaphorical characteristics of composite materials in terms of a visual aspect on a new material that is applicable for housing space. The results are as follows. First, the recent trend of housing space tends to stimulate emotions of residents through visual finishing materials, and for this reason, visual expression of a new material that is applicable to finishing materials plays an important role. Second, convertibleness, association and duplicity were selected as items of metaphorical expressions through the precedent studies. Third, most of combinations of materials were shown different from the existing materials in an expressive characteristic of composite materials through analysis, and application of a technology showed a different visual effect of patterns and textures from the existing materials. This implies that visual expression and directing are being attempted using such technology on finishing materials of housing space with development of digital technologies. Fourth, for metaphorical characteristics of composite material for housing space, combination of various materials and a digital technology were applied on convertibleness. For association, a combination of materials that have each different characteristic associated with the third material, and combination with subsidiary material of optical fiber and a digital technology were appled for duplicity. Data obtained from the results of this study has high efficiency in planning finishing materials for emotional housing space in future, and it will be basic data for a study on development of new finishing materials.

Shaking table test and horizontal torsional vibration response analysis of column-supported vertical silo group silo structure

  • Li, Xuesen;Ding, Yonggang;Xu, Qikeng
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.377-389
    • /
    • 2021
  • Reinforced concrete vertical silos are universal structures that store large amounts of granular materials. Due to the asymmetric structure, heavy load, uneven storage material distribution, and the difference between the storage volume and the storage material bulk density, the corresponding earthquake is very complicated. Some scholars have proposed the calculation method of horizontal forces on reinforced concrete vertical silos under the action of earthquakes. Without considering the effect of torsional effect, this article aims to reveal the expansion factor of the silo group considering the torsional effect through experiments. Through two-way seismic simulation shaking table tests on reinforced concrete column-supported group silo structures, the basic dynamic characteristics of the structure under earthquake are obtained. Taking into account the torsional response, the structure has three types of storage: empty, half and full. A comprehensive analysis of the internal force conditions under the material conditions shows that: the different positions of the group bin model are different, the side bin displacement produces a displacement difference, and a torsional effect occurs; as the mass of the material increases, the structure's natural vibration frequency decreases and the damping ratio Increase; it shows that the storage material plays a role in reducing energy consumption of the model structure, and the contribution value is related to the stiffness difference in different directions of the model itself, providing data reference for other researchers; analyzing and calculating the model stiffness and calculating the internal force of the earthquake. As the horizontal side shift increases in the later period, the torsional effect of the group silo increases, and the shear force at the bottom of the column increases. It is recommended to consider the effect of the torsional effect, and the increase factor of the torsional effect is about 1.15. It can provide a reference for the structural safety design of column-supported silos.