• 제목/요약/키워드: Difference tomography

검색결과 759건 처리시간 0.038초

Joint Space Analysis Using Cone-beam Computed Tomography Imaging in Patients Diagnosed with Temporomandibular Joint Osteoarthritis and Occlusal Changes

  • Hyun-Jeong Park;Yo-Seob Seo;Jong-Won Kim;Sun-Kyoung Yu;Ji-Won Ryu
    • Journal of Oral Medicine and Pain
    • /
    • 제48권4호
    • /
    • pp.152-158
    • /
    • 2023
  • Purpose: This pilot study aimed to evaluate changes in joint space (JS) using cone-beam computed tomography (CBCT) images of patients diagnosed with temporomandibular joint (TMJ) osteoarthritis (OA) and to determine the association between occlusal changes and JS. Methods: CBCT images were used to measure the anterior, superior, and posterior JSs of the sagittal plane. The differences in JS values over time and between groups were compared. The percentage change in the anteroposterior position of the mandibular condyle between groups was also analyzed. Results: Thirty-four subjects (mean age=43.91±20.13), comprising eight males (23.5%) and 26 females (76.5%), were divided into 18 patients with no change in occlusion (NCO) and 16 patients with a change in occlusion (CO) during TMJ OA. The JS measurements of the study subjects showed a decrease in anterior joint space (AJS) values over time. There was no difference in JS measurements between the groups at T1 and T2. AJS values measured at T1 were lower in the CO group than in the NCO group, but the difference was not statistically significant. In both groups, a posterior position of the mandibular condyle was initially observed with high frequency. However, there is a statistically significant difference in CBCT images taken after occlusal changes, with an increased frequency of condyles observed in the anterior or central positions. Conclusions: In conclusion, AJS decreased over time in TMJ OA, and the mandibular condyle became more anteriorly positioned with occlusal changes. Therefore, clinicians should diligently monitor mandibular condyle morphology and JS using CBCT, along with the patient's clinical symptoms, to treat and control TMJ OA effectively.

개에서 전산화단층촬영을 이용한 Calcium Oxalate결석과 Struvite결석의 감별 (Differentiation of Canine Calcium Oxalate and Canine Struvite Stones using Computed Tomography)

  • 윤영민;이희천
    • 한국임상수의학회지
    • /
    • 제32권1호
    • /
    • pp.69-72
    • /
    • 2015
  • This study was performed to differentiate calcium oxalate and struvite canine urinary stones using computed tomography. A total of 38 urinary stones (8 calcium oxalate and 30 struvite) were scanned using a computed tomography scanner. These urinary stones (10-15 mm diameter) extracted surgically without fragmentation were obtained from the different individual patients. The stone's Hounsfield units(HU) values, heterogenicity, and roughness of surface were evaluated to differentiate calcium oxalate and struvite. The HU values of calcium oxalate were significantly higher than those of struvite. A receiver operator characteristic (ROC) curve revealed 1272 as the best threshold value to distinguish calcium oxalate from struvite (ROC curve AUC 0.87, p < 0.0014). The heterogenicity of calcium oxalate and struvite significantly differed on bone and dental window setting (p < 0.0001). There was no significant difference between calcium oxalate and struvite in roughness of surface. On computed tomographic images, bone and dental windows setting were useful for evaluation of heterogenicity between calcium oxalate and struvite. The HU value and heterogenicity are highly promising factor that can distinguish calcium oxalate and struvite with reasonable accuracy.

사각관 이상유동 분석을 위한 전기적 캐패시턴스 토모그라피 코드 개발 (Development of an Electrical Capacitance Tomography Code for Analysis of Two-Phase Flow in the Rectangular Pipe)

  • 이경황;이재영
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.87-94
    • /
    • 2005
  • A computer code for Electrical Capacitance Tomography (ECT) is developed to sense the cross sectional phase distribution of two-phase flow in the rectangular pipe in which the tomography sensor furnished by the insulated wall, electrodes, and electric field screen. The computer code had two steps for the image reconstruction. In the forward projection step, the sensitivity matrix was constructed based on the electric field calculated by the finite difference method. In the backward projection step, the sensitivity matrix and the measured capacitances were used to reconstruct the cross sectional image. Several algorithms including LBP, TR, ITR, and PLI were employed to find the proper one for the two-phase flow analysis. Since the dielectric constant of the water in two-phase flow is sensitive to the thermal parameter such as, temperature and pressure, the developed code was evaluated to find their accuracy, speed of calculation, and sensitivity to the variation of the dielectric constant. It was found that the iterative methods are superior to the direct methods for the image reconstruction, and the PLI method was the best in the variation of the dielectric constants.

Synthetic Computed Tomography Generation while Preserving Metallic Markers for Three-Dimensional Intracavitary Radiotherapy: Preliminary Study

  • Jin, Hyeongmin;Kang, Seonghee;Kang, Hyun-Cheol;Choi, Chang Heon
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.172-178
    • /
    • 2021
  • Purpose: This study aimed to develop a deep learning architecture combining two task models to generate synthetic computed tomography (sCT) images from low-tesla magnetic resonance (MR) images to improve metallic marker visibility. Methods: Twenty-three patients with cervical cancer treated with intracavitary radiotherapy (ICR) were retrospectively enrolled, and images were acquired using both a computed tomography (CT) scanner and a low-tesla MR machine. The CT images were aligned to the corresponding MR images using a deformable registration, and the metallic dummy source markers were delineated using threshold-based segmentation followed by manual modification. The deformed CT (dCT), MR, and segmentation mask pairs were used for training and testing. The sCT generation model has a cascaded three-dimensional (3D) U-Net-based architecture that converts MR images to CT images and segments the metallic marker. The performance of the model was evaluated with intensity-based comparison metrics. Results: The proposed model with segmentation loss outperformed the 3D U-Net in terms of errors between the sCT and dCT. The structural similarity score difference was not significant. Conclusions: Our study shows the two-task-based deep learning models for generating the sCT images using low-tesla MR images for 3D ICR. This approach will be useful to the MR-only workflow in high-dose-rate brachytherapy.

Investigation of the effects of storage time on the dimensional accuracy of impression materials using cone beam computed tomography

  • Alkurt, Murat;Duymus, Zeynep Yesil;Dedeoglu, Numan
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권5호
    • /
    • pp.380-387
    • /
    • 2016
  • PURPOSE. The storage conditions of impressions affect the dimensional accuracy of the impression materials. The aim of the study was to assess the effects of storage time on dimensional accuracy of five different impression materials by cone beam computed tomography (CBCT). MATERIALS AND METHODS. Polyether (Impregum), hydrocolloid (Hydrogum and Alginoplast), and silicone (Zetaflow and Honigum) impression materials were used for impressions taken from an acrylic master model. The impressions were poured and subjected to four different storage times: immediate use, and 1, 3, and 5 days of storage. Line 1 (between right and left first molar mesiobuccal cusp tips) and Line 2 (between right and left canine tips) were measured on a CBCT scanned model, and time dependent mean differences were analyzed by two-way univariate and Duncan's test (${\alpha}=.05$). RESULTS. For Line 1, the total mean difference of Impregum and Hydrogum were statistically different from Alginoplast (P<.05), while Zetaflow and Honigum had smaller discrepancies. Alginoplast resulted in more difference than the other impressions (P<.05). For Line 2, the total mean difference of Impregum was statistically different from the other impressions. Significant differences were observed in Line 1 and Line 2 for the different storage periods (P<.05). CONCLUSION. The dimensional accuracy of impression material is clinically acceptable if the impression material is stored in suitable conditions.

Cone-Beam Computed Tomographic Assessment of Temporomandibular Joint Morphology in Patients with Temporomandibular Joint Disc Displacement and in Healthy Subjects: A Pilot Study

  • Choi, Hang-Moon;Park, Moon-Soo
    • Journal of Oral Medicine and Pain
    • /
    • 제41권2호
    • /
    • pp.41-47
    • /
    • 2016
  • Purpose: The purpose of this study was to analyze the size and morphology of mandibular condyle and mandibular fossa between temporomandibular joint (TMJ) disc displacement (DD) patients and healthy subjects using cone-beam computed tomography (CBCT). Methods: Twenty healthy subjects and twenty TMJ DD patients participated in this study respectively. We made five measurements in mandibular condyle (medio-lateral dimension, antero-posterior dimension, condyle height, intercondylar distance and intercondylar angle) and two measurements in mandibular fossa (mandibular fossa depth and articular eminence angle) using CBCT image. Results: There was no difference between two groups in medio-lateral dimension. In case of antero-posterior dimension, average of healthy controls was larger than that of TMJ DD patients, but that was not significant statistically. There were no significant differences between two groups in condyle height. Comparing intercondylar distance and intercondylar angle between two groups, there was no significant difference between two groups. In comparison of mandibular fossa depth and articular eminence angle, there was no significant difference between two groups. Conclusions: We couldn't find any definite relationship between TMJ morphology and TMJ DD.

How Computed Tomography Contrast Media and Magnetic Resonance Imaging Contrast Media Affect the Changes of Uptake Counts of 201Tl

  • Lee, Jin-Hyeok;Lee, Hae-Kag;Cho, Jae-Hwan;Cheon, Miju
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.372-377
    • /
    • 2014
  • The purpose of the study is to investigate how uptake counts of $^{201}Tl$ of radioisotopes in the human body could change, when taking computed tomography and magnetic resonance imaging right after injecting contrast media. $^{201}Tl$ radioisotope substances of iodine contrast medium, which is a computed tomography contrast medium, and paramagnetic contrast medium, which is an magnetic resonance imaging contrast medium, were used as study materials. First, $^{201}Tl$ was put into 4 cc of normal saline in test tube, and then a computed tomography contrast medium of Iopamidol$^{(R)}$ or Dotarem$^{(R)}$, was put into 2 cc of normal saline in test tube. An magnetic resonance imaging contrast medium of Primovist$^{(R)}$ or Gadovist$^{(R)}$ was also put into 2 cc of normal saline in test tube. Each contrast medium was distributed to make $^{201}Tl$ as 3 mCi, with a total of 4 cc. Gamma camera, low energy high resolution collimator, and pinhole collimator were used to obtain images. The uptake count of $^{201}Tl$ was measured with 1000 frames of images, and obtained after 10 times of repetition. This study revealed that the use of Gadovist$^{(R)}$, which is an magnetic resonance imaging contrast medium, showed the smallest number of uptake count, after measuring $^{201}Tl$ uptake count by low energy high resolution collimator. On the other hand, the use of Iopamidol$^{(R)}$, which is a computed tomography contrast medium, showed the biggest difference in uptake count, when measuring $^{99m}Tc$ uptake count by Pinhole collimator. When examining with gamma camera, using contrast medium and $^{201}Tl$, identifying the changes of uptake count is very important for improving the value of diagnosis.

Cone beam형 전산화단층영상에서 골의 형태와 밀도의 평가 (Evaluation of imaging reformation with cone beam computed tomography for the assessment of bone density and shape in mandible)

  • 홍상우;김규태;최용석;황의환
    • Imaging Science in Dentistry
    • /
    • 제38권1호
    • /
    • pp.49-56
    • /
    • 2008
  • Purpose: Diagnostic estimation of destruction and formation of bone has the typical limit according to capacity of x-ray generator and image detector. So the aim of this study was to find out how much it can reproduce the shape and the density of bone in the case of using recently developed dental type of cone beam computed tomography, and which image is applied by new detector and mathematic calculation. Materials and Methods: Cone beam computed tomography (PSR 9000N, Asahi Roentgen Ind. Co., Ltd., Japan) and soft x-ray radiography were executed on dry mandible that was already decalcified during 5 hours, 10 hours, 15 hours, 20 hours, and 25 hours. Estimating and comparing of those came to the following results. Results: The change of inferior border of mandible and anterior border of ramus in the region of cortical bone was observed between first 5 and 10 hours of decalcification. The reproduction of shape and density in the region of cortical bone and cancellous bone can be hardly observed at cone beam computed tomography compared with soft x-ray radiography. The difference of decrease of bone density according to hours of decalcification increase wasn't reproduced at cone beam computed tomography compared with soft x-ray radiography. Conclusion: CBCT images revealed higher spatial resolution. However, contrast resolution in region of low contrast sensitivity is the inferiority of images' property.

  • PDF

Effect of field-of-view size on gray values derived from cone-beam computed tomography compared with the Hounsfield unit values from multidetector computed tomography scans

  • Shokri, Abbas;Ramezani, Leila;Bidgoli, Mohsen;Akbarzadeh, Mahdi;Ghazikhanlu-Sani, Karim;Fallahi-Sichani, Hamed
    • Imaging Science in Dentistry
    • /
    • 제48권1호
    • /
    • pp.31-39
    • /
    • 2018
  • Purpose: This study aimed to evaluate the effect of field-of-view (FOV) size on the gray values derived from cone-beam computed tomography (CBCT) compared with the Hounsfield unit values from multidetector computed tomography (MDCT) scans as the gold standard. Materials and Methods: A radiographic phantom was designed with 4 acrylic cylinders. One cylinder was filled with distilled water, and the other 3 were filled with 3 types of bone substitute: namely, Nanobone, Cenobone, and Cerabone. The phantom was scanned with 2 CBCT systems using 2 different FOV sizes, and 1 MDCT system was used as the gold standard. The mean gray values(MGVs) of each cylinder were calculated in each imaging protocol. Results: In both CBCT systems, significant differences were noted in the MGVs of all materials between the 2 FOV sizes(P<.05) except for Cerabone in the Cranex3D system. Significant differences were found in the MGVs of each material compared with the others in both FOV sizes for each CBCT system. No significant difference was seen between the Cranex3D CBCT system and the MDCT system in the MGVs of bone substitutes on images obtained with a small FOV. Conclusion: The size of the FOV significantly changed the MGVs of all bone substitutes, except for Cerabone in the Cranex3D system. Both CBCT systems had the ability to distinguish the 3 types of bone substitutes based on a comparison of their MGVs. The Cranex3D CBCT system used with a small FOV had a significant correlation with MDCT results.

초음파 tomography를 응용한 콘크리트 구조물의 비파괴 시험에 관한 연구 (Application of Ultrasound Tomography for Non-Destructive Testing of Concrete Structure)

  • 김영기;윤영득;윤종열;김정수;김운경;송문호
    • 대한전자공학회논문지SP
    • /
    • 제37권1호
    • /
    • pp.27-36
    • /
    • 2000
  • 본 연구에서는 초음파와 tomography 기법을 기반으로 콘크리트 구조물의 비파괴 시험에 대한 방법론을 정립하고 검증하였다 일반적인 X-ray tomography에서는 물체를 통과하는 파동의 감쇠(attenuation) 데이터에 기초를 두고있는 반면에, 본 연구에서는 time-of-flight(TOF) 데이터를 사용하여 매질의 굴절률(refractive index)을 포괄적으로 표현하는 단층영상을 복원한다 X-ray tomography에서는 측정된 감쇠 데이터를 영상복원(Image reconstruction) 알고리즘에 의해서 처리하며, 파동의 굴절은 고려할 필요가 없다 그러나 초음파는 매질(medium)의 굴절률(refractive index)에 따라 초음파의 경보가 변경되므로 초음파 tomography에서는 초음파 경로의 연산이 선행되어야만 단층영상을 복원할 수 있게 된다 초음파 정보의 연산은 가하광학(Geometrical Optic)에서 사용되는 굴절률과 경로의 관계에 기초를 둔다 영상 복원은 대수학적 접근 방법인 ART (algebraic reconstruction technique) 또는 SIRT(simultaneous iterative reconstruction technique)를 기초로 연산된 초음파의 경로를 따라 선적분한 TOF 값과 측정된 TOF 값의 차이를 기반으로 수행된다 실제 구현에서는 초음파가 직진한다는 가정하에 영상을 복원하고, 이를 기반으로 초음파의 경로를 연산하였다 본 논문에서는 이들 두 과정(경로연산 및 영상복원)의 반복연산을 통하여 영상을 복원하였다. 세안하는 알고리즘을 모의실험으로 평가하였고, 실제 콘크리트 구조물에 적용하여 본 방법론의 무한한 가능성을 입증하였다.

  • PDF