• Title/Summary/Keyword: Difference equation

Search Result 2,168, Processing Time 0.027 seconds

Finite difference TVD scheme for modeling two-dimensional advection-dispersion

  • Guan, Y.;Zhang, D.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.22-27
    • /
    • 2006
  • This paper describes the development of the stream-tube based dispersion model for modeling contaminant transport in open channels. The operator-splitting technique is employed to separate the 2D contaminant transport equation into the pure advection and pure dispersion equations. Then the total variation diminishing (TVD) schemes are combined with the second-order Lax-Wendroff and third-order QUICKEST explicit finite difference schemes respectively to solve the pure advection equation in order to prevent the occurrence of numerical oscillations. Due to various limiters owning different features, the numerical tests for 1D pure advection and 2D dispersion are conducted to evaluate the performance of different TVD schemes firstly, then the TVD schemes are applied to experimental data for simulating the 2D mixing in a straight trapezoidal channel to test the model capability. Both the numerical tests and model application show that the TVD schemes are very competent for solving the advection-dominated transport problems.

  • PDF

Computational Study on the Characteristics of Nonlinear Wave Caused by Breaking Waves of Two-Dimensional Regular Periodic Wave (2차원 진행규칙파열에서의 쇄파현상에 따른 비선형성 파의 특성에 관한 수치적 연구)

  • 박종천;관전수명
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.50-61
    • /
    • 1996
  • The breaking phenomenon of regular periodic waves generated by a numerical wave maker is simulated by finite-difference method which can cope with strong interface motions. The air and water flows are simultaneously solved in the time-marching solution procedure for the Navier-Stokes equation. A density-function technique is devised for the implemenation of the interface conditions. The accuracy is examined and applied to the simulation of two-dimensional breaking phenomena of periodic gravity waves.

  • PDF

Kinetic Theory Analysis for Thin-Film Bearings (기체분자운동론을 이용한 박막 베어링 해석)

  • Chung Chan Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.162-170
    • /
    • 2004
  • A kinetic theory analysis is used to study the ultra-thin gas flow field in gas slider hearings. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for the flow field inside stepped and straight slider bearings. The results are compared well with those from the DSMC method. Special attention has been paid to the effect of the pressure build-up in front of a hearing, which has never been assessed before. It has been shown that the pressure build-up at the inlet is about $4.5\%$ of the operating pressure and the resulting load capacity is about $25\%$ higher for the case considered in the present study.

  • PDF

Numerical Analysis of Gas Flows in Microchannels in Series (직렬 미소채널 기체유장의 수치해석)

  • Chung Chan Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.221-231
    • /
    • 2004
  • A kinetic theory analysis is made of low-speed gas flows in a microfluidic system consisted of three microchannels in series. The Boitzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. For the evaluation of the present method results are compared with those from the DSMC method and an analytical solution of the Navier-Stokes equations with slip boundary conditions. Calculations are made for flows at various Knudsen numbers and pressure ratios across the channel. The results compared well with those from the DSMC method. It is shown that the analytical solution of the Navier-Stokes equations with slip boundary conditions which is suited fur fully developed flows can give relatively good results. In predicting the geometrically complex flows up to a Knudsen number of about 0.06. It is also shown that the present method can be used to analyze extremely low-speed flow fields for which the DSMC method is Impractical.

  • PDF

The Effect of Flow Rate into Room by Natural Convection in Air Conditioner Duct (공조기 덕트 내의 자연대류가 실내 유입유량에 미치는 영향)

  • 공태우;정한식;정효민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.160-166
    • /
    • 2001
  • A numerical analysis has been performed for natural convection in an air conditioner duct system. The governing equations were solved a finite volume method using a SIMPLE algorithm. In the calculation mode of duct, the room temperature was preserved at $25.0^{\circ}C$ and duct wall temperature had a temperature of 15, 20.0, 22.5, 23.75, 26.25, 27.5 30 and $35^{\circ}C$. The results of velocity vectors and contours have been represented for various parameters. Based on the numerical data, the relationships between temperature difference and flow rate into room was represented. In the case of $T_\gamma>T_\omega$, the equation for temperature difference and flow rate was $Q=0.0285\triangleT^0.4005$, and in the case of $T_\gamma>T_\omega$, the equation was $Q=0.0099\triangleT^0.4752$. The duct system has an important relation to room temperature and duct wall temperature.

  • PDF

The Dynamics of Solutions to the Equation $x_{n+1}=\frac{p+x_{n-k}}{q+x_n}+\frac{x_{n-k}}{x_n}$

  • Xu, Xiaona;Li, Yongjin
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.153-164
    • /
    • 2010
  • We study the global asymptotic stability, the character of the semicycles, the periodic nature and oscillation of the positive solutions of the difference equation $x_{n+1}=\frac{p+x_{n-k}}{q+x_n}+\frac{x_{n-k}}{x_n}$, n=0, 1, 2, ${\cdots}$. where p, q ${\in}$ (0, ${\infty}$), q ${\neq}$ 2, k ${\in}$ {1, 2, ${\cdots}$} and the initial values $x_{-k}$, ${\cdots}$, $x_0$ are arbitrary positive real numbers.

Oscillatory Behavior of Linear Neutral Delay Dynamic Equations on Time Scales

  • Saker, Samir H.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.175-190
    • /
    • 2007
  • By employing the Riccati transformation technique some new oscillation criteria for the second-order neutral delay dynamic equation $$(y(t)+r(t)y({\tau}(t)))^{{\Delta}{\Delta}}+p(t)y(\delta(t))=0$$, on a time scale $\mathbb{T}$ are established. Our results as a special case when $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=\mathbb{N}$ improve some well known oscillation criteria for second order neutral delay differential and difference equations, and when $\mathbb{T}=q^{\mathbb{N}}$, i.e., for second-order $q$-neutral difference equations our results are essentially new and can be applied on different types of time scales. Some examples are considered to illustrate the main results.

  • PDF

Dynamical Behavior of a Third-Order Difference Equation with Arbitrary Powers

  • Gumus, Mehmet;Abo-Zeid, Raafat;Ocalan, Ozkan
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.251-263
    • /
    • 2017
  • The aim of this paper is to investigate the dynamical behavior of the difference equation $$x_{n+1}={\frac{{\alpha}x_n}{{\beta}+{\gamma}x^p_{n-1}x^q_{n-2}}},\;n=0,1,{\ldots}$$, where the parameters ${\alpha}$, ${\beta}$, ${\gamma}$, p, q are non-negative numbers and the initial values $x_{-2}$, $x_{-1}$, $x_0$ are positive numbers. Also, some numerical examples are given to verify our theoretical results.

Extraction of Initial Conditions For a Recursive Numerical Inverse z-Transform Method (차분방정식에 의한 역 z변환 계산을 위한 초기 조건의 추출)

  • Lee, Jae-Seok;Jeong, Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.8
    • /
    • pp.368-373
    • /
    • 2002
  • The inverse z-transform of a z-domain expression of a sequence can be Performed in many different methods among which the recursive computational method is based on the difference equation. In applying this method, a few initial values of the sequence should be obtained separately. Although the existing method generates the right initial values of the sequence, its derivation and justification are not theoretically in view of the definition of z-transform and its shift theorems. In this paper a general approach for formulating a difference equation and for obtaining required initial values of a sequence is proposed, which completely complies to the definition of the z-transform and an interpretation of the validity of the existing method which is theoretically incorrect.

OSCILLATION OF SUB LINEAR DIFFERENCE EQUATIONS WITH POSITIVE NEUTRAL TERM

  • LI QIAOLUAN;WANG CHUNGIAO;LI FANG;LIANG HAIYAN;ZHANG ZHENGUO
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.305-314
    • /
    • 2006
  • In this paper, we consider the oscillation of first order sublinear difference equation with positive neutral term $\Delta(\chi(n)+p(n)\chi(\tau(n)))+f(n,\chi(g1(n)),\cdots,\chi(gm(n)))=0$. We obtain necessary and sufficient conditions for the solutions of this equation to be oscillatory.