• Title/Summary/Keyword: Diesel-powered vehicle

Search Result 16, Processing Time 0.026 seconds

Exposures of Ultrafine Particles for Passengers of Elephant Vehicle in the Seoul Grand Park (서울대공원 코끼리 열차 특성에 따른 탑승자의 초극미세입자(Ultrafine Particles) 노출)

  • Joo, Song-Yi;Hwang, Ji-Hee;Ham, Seung-Hon;Lee, Ki-Young
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.5
    • /
    • pp.393-397
    • /
    • 2012
  • Objectives: The objectives of this study were to measure passengers' exposure to ultrafine particles (UFP) and to determine effects of fuel, operating condition and position of seat. Method: UFP exposures in front and back seats of the Elephant vehicle in Seoul Grand Park were simultaneously measured by a condensation particle counter (P-Trak model 8525, TSI). The measurements were conducted 7 times with diesel-powered vehicle and 3 times with electricity vehicle in one day. The vehicle stopped at 3 locations along with 2.2 km of driving route. Results: UFP concentration in diesel-powered vehicle was significantly higher than electricity vehicle. At front seat of diesel-powered vehicle, average UFP exposure during stopping was significantly higher than during moving. When diesel-powered vehicle moved, UFP exposure in back seat was significantly higher than in front seat. Conclusions: Passengers in the diesel-powered Elephant vehicle could be exposed to high level of UFP. The UFP exposure was associated with operation condition and position of seat.

A Study on the Source Profile Development for Diesel and Gasoline-Powered Vehicles (디젤 및 가솔린자동차 배출원의 구성물질 성분비 개발에 관한 연구)

  • Kang, Byung-Wook;Cho, Min-Shik;Lee, Seung-Bok;Bae, Gwi-Nam;Lim, Cheol-Soo;Na, Kwang-Sam;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.318-329
    • /
    • 2010
  • The purpose of this study was to develop the $PM_{2.5}$ source profiles for diesel and gasoline-powered vehicles, which contained mass abundances in terms of mass fraction of $PM_{2.5}$ of chemical species. Seven diesel-powered vehicles and nine gasoline-powered vehicles were sampled from a chassis dynamometer exhaust dilution system. The species measured were water-soluble ions, elements, elemental carbon (EC), and organic carbon (OC). From this study, the large abundances of EC (54.5%), OC (26.0%), ${SO_4}^{2-}$ (1.5%), ${NO_3}^-$ (0.8%), and S (0.6%) were observed from the diesel-powered vehicle exhaust showing that carbons were dominant species. The gasoline-powered vehicle exhaust emitted large abundances of OC (38.3%), EC (4.2%), ${SO_4}^{2-}$ (3.6%), ${NH_4}^+$ (3.5%), and ${NO_3}^-$ (3.0%). The abundances of ${SO_4}^{2-}$, ${NH_4}^+$, and ${NO_3}^-$ from gasoline vehicle were greater than those of diesel vehicle. The emissions of P, S, Ca, Fe, and Zn among trace elements for the gasoline vehicle were greater than 1% of the $PM_{2.5}$ mass unlike those for the diesel vehicle. Particularly, the fraction of Zn was five times higher from the gasoline vehicle than that from the diesel vehicle. The source profiles developed in this work were intensively examined by applying chemical mass balance model.

An Experimental Study on Improvement of Exhaust Gas Testing Method of Light-Duty Diesel Engine (소형디젤승합차의 배출가스 검사방법 개선에 관한 실험적 연구)

  • 한영출;나완용;오용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.56-61
    • /
    • 2001
  • In recent years, the environmental demage to urban area becomes serious problem due to the exhaust emissions by increasing the number of vehicle. The proportion of diesel vehicle is very high in this country. Exhaust gas emitted from the diesel-powered vehicle is severly affecting to the air quality. In this study, light-duty diesel engine was studied on the improvement of exhaust gas testing method. Therefore the results obtained effective load method among testing method. It is deserve to test of the PM for the environment.

  • PDF

Development of CNG/Gasoline Bi-fuel engine for a small truck and the evaluation of engine performance (소형 트럭용 CNG/가솔린 겸용 엔진 개발과 성능 분석)

  • Kwon, O-Woon;Kim, Jae-Soo;Park, Yong-Kook;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.21-28
    • /
    • 2006
  • A diesel truck of 1 ton is re-powered by a gasoline engine and the fuelling system of gasoline engine modified to gasoline/CNG bi fuel system. The engine characteristics such as fuel economy and power are evaluated by driving rest, sloping test and dynamometer. The driving test prove the driving cost is saved by 55% and the maximum speed is raised by 13%, which is mainly due to the higher calorific value of CNG. The sloping test is done on the road of which slope is 15%. The truck shows the mean velocity of 88km/h, which means that a re-powered truck is working fine. The BHP are measured by dynamometer. The power and torque produced by a re-powered truck are reduced by 13% and 14% respectively from the power of gasoline engine. The BHP reduction is one of main problems which one has to solve in near future.

  • PDF

Application of Representative $PM_{2.5}$ Source Profiles for the Chemical Mass Balance Study in Seoul

  • Kang, Choong-Min;Kang, Byung-Wook;SunWoo, Young;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.32-43
    • /
    • 2008
  • Source samples were collected to construct source profiles for 9 different source types, including soil, road dust, gasoline/diesel-powered vehicles, a municipal incinerator, industrial sources, agricultural/biomass burning, marine aerosol, and a coal-fired power plant. Seasonal profiles for 'Chinese aerosol', aerosols derived from the urban area of China, were reconstructed from seasonal $PM_{2.5}$ compositions reported in Beijing, China. Ambient $PM_{2.5}$ at a receptor site was also measured during each of the four seasons, from April 2001 to February 2002, in Seoul. The Chemical Mass Balance receptor model was applied to quantify source contributions during the study period using the estimated source profiles. Consequently, motor vehicle exhaust (33.0%), in particular 23.9% for diesel-powered vehicles, was the largest contributor affecting the $PM_{2.5}$ levels in Seoul, followed by agricultural/biomass burning (21.5%) and 'Chinese aerosol' (13.1%), indicating contributions from long-range transport. The largest contributors by season were: for spring, 'Chinese aerosol' (31.7%); for summer, motor vehicle exhaust (66.9%); and for fall and winter, agricultural/biomass burning (31.1% and 40.1%, respectively). These results show different seasonal patterns and sources affecting the $PM_{2.5}$ level in Seoul, than those previously reported for other cities in the world.

Analysis of Down Speeding Effect on Fuel Economy during NEDC (다운 스피딩이 NEDC 모드 연비에 미치는 기여도 산출에 관한 연구)

  • Shim, Beom-Joo;Park, Kyoung-Suk;Park, Jun-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.88-94
    • /
    • 2012
  • Development trend of modern HSDI diesel engine is now focusing on low fuel consumption and emission because of strong interest in global environmental protection. Two big branches of criteria for modern diesel engine development are down sizing and down speeding. Down sizing keeps engine operation condition to the direction of higher load and thus pursuing for better thermal efficiency. But this may cause degraded vehicle dynamic performance because of reduced back up torque. Down speeding keeps engine operation condition to the direction of slightly higher load and lower engine speed. Therefore reduction of back up torque can be limited within flat torque area. This study analyzed fuel economy effect of down speeding on a vehicle powered by HSDI diesel engine in aspect of engine friction work, intake and exhaust pumping work, exhaust hat loss and thermal loss of fuel leakage of fuel injection system. Contribution factor of each engine and vehicle related parameters under basic and down speeding condition were compared and work balance of down speeding during NEDC was analyzed.

Evaluation of Endocrine Disrupting Chemicals-Complex Mixture in Diesel Exhaust Respirable Particulate Matter

  • Ryu, Byung-Tak;Jang, Hyoung-Seok;Kim, Yun-Hee;Kim, Soung-Ho;Lee, Do-Han;Han, Kyu-Tae;Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.195-195
    • /
    • 2003
  • It is well known that diesel exhaust particulate matter contains mutagenic PAHs, such as benzo[${\alpha}$]pyrene, benz[${\alpha}$]anthracene, chrysene, etc. Therefore it is suspected that these chemicals act on estrogen receptor and reveal endocrine-disrupting effects. Recent attention has focused on causative chemicals of endocrine-disrupting effects. We examined the estrogenic activity of respirable diesel exhaust particulate matter derived from diesel powered vehicle. PM2.5 diesel exhaust of vehicle was collected using a high volume sampler equipped with a cascade impactor. Diesel exhaust samples were fractionated according to EPA methods. The presence of estrogenic and antiestrogenic chemicals in PM 2.5 diesel exhaust was determined using E-screen assay. To quantitatively assess the estrogenic and antiestrogenic activities in diesel exhaust particulate matter, estradiol equivalent concentration (bio-EEQ) was calculated by comparing the concentration response curve of the sample with those of the estrogen calibration curve. Weak estrogenic activities and strong antiestrogenic activities were detected in the crude extract and moderately polar fractions. Higher antiestrogenic potency was observed with higher EROD activities in aliphatic and aromatic compounds fraction. In conclusion, estrogenic/antiestrogenic-like activities were present in diesel exhaust particulate matter. However, the health consequences of this observation was unknown, the presence of these activities may contribute to and exacerbate adverse health effect evoked by diesel exhaust particulate matter.

  • PDF

Characteristics Analysis of Exhaust Emission according to Fuels at CVS-75 Mode (CVS-75모드에서 사용연료에 따른 배출가스 특성분석)

  • Han, Sung-Bin;Kim, Yong-Tae;Lee, Ho-Kil;Kang, Jung-Ho;Jeong, Jae-U;Chun, Yon-Jong
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • The regulations for exhaust emission from vehicles have become much more stringent in recent years. These more stringent regulations require vehicle manufacturers to develop alternative fuels that reduce exhaust emission. This research is to analyze the characteristics of exhaust gas emission of same level vehicles that use gasoline, diesel, and LPG fuels. As for the test mode, we used the CVS-75 mode, which is the driving mode of the current domestic and North American emissions. The characteristics of the exhaust gas emitted under this driving condition was studied. We examined the emissions of THC, CO, and NOx of vehicles that use gasoline, diesel, and LPG fuels. As a result, vehicle exhaust gas emissions increased 9.8 % for vehicles using gasoline and it decreased 12.2 % for diesel-powered vehicles compared to vehicles using LPG fuel. Using gasoline and LPG fuel in the CVS-mode, over 80 % of THC and CO emission was produced for the cold start Phase 1.

A Case Study of Exposure to Elemental Carbon (EC) in an Underground Copper Ore Mine (구리원석광산에서의 Elemental Carbon (EC) 노출에 관한 사례연구)

  • Lee, Su-Gil;Kim, Jung-Hee;Kim, Seong-Soo
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1013-1021
    • /
    • 2017
  • Exposure to Diesel Particulate Matter (DPM) potentially causes adverse health effects (e.g. respiratory symptoms, lung cancer). Due to a lack of data on Elemental Carbon (EC) exposure levels in underground copper ore mining (unlike other underground mining industries such as non-metallic and coal mining), this case study aims to provide individual miners' EC exposure levels, and information on their work practices including use of personal protective equipment. EC measurement was carried out during different work activities (i.e. drilling, driving a loader, plant fitting, plant operation, driving a Specialized Mining Vehicle (SMV)) as per NIOSH Method 5040. The copper miners were working 10 h/day and 5 days/week. This study found that the most significant exposures to EC were reported from driving a loader (range $0.02-0.42mg/m^3$). Even though there were control systems (i.e. water tanks and DPM filters) on the diesel vehicles, around 49.5% of the results were over the adjusted recommendable exposure limit ($0.078mg/m^3$). This was probably due to: (1) driver's frequently getting in and out of the diesel vehicles and opening the windows of the diesel vehicles, and (2) inappropriate maintenance of the diesel vehicles and the DPM control systems. The use of the P2 type respirator provided was less than 19.2%. However, there was no significant difference between the day shift results and the night shift results. In order to prevent or minimize exposure to EC in the copper ore mine, it is recommended that the miners are educated in the need to wear the appropriate respirator provided during their work shifts, and to maintain the diesel engine and emission control systems on a regular basis. Consideration should be given to a specific examination of the diesel vehicles' air-conditioning filters and the air ventilation system to control excessive airborne contaminants in the underground copper mine.

Technical Trend of Electric Vehicle (전기자동차 핵심 기술 동향)

  • Joo, K.J.;Jang, S.R.;Mostafa, Farag Kamel Abo-Elusr;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.947_948
    • /
    • 2009
  • In an attempt to minimize the air pollution caused by CO2, $NO_X$x, and $SO_X$ and the fuel cost, the auto industries and researchers recently are looking into replacing the diesel and gasoline cars with hybrid electric vehicles, plug-in electric vehicles, or battery powered electrical vehicles. This paper reports the technical status of the primary components such as batteries, motors, power control units and auxiliary parts to be used for electric vehicles.

  • PDF