• Title/Summary/Keyword: Diesel-Water Emulsion

Search Result 21, Processing Time 0.034 seconds

A Study on the Injection Characteristics of Diesel-water Emulsion Fuels according to Compositions (디젤-워터 에멀젼 연료의 조성에 따른 분무 특성에 관한 연구)

  • Woo, Seungchul;Kim, Hyungik;Park, Jangsoo;Lee, Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.263-270
    • /
    • 2015
  • Using Diesel-Water Emulsion fuel in commercial diesel engine can reduce NOx and soot when it is injected through the injector. Because water in Diesel-Water Emulsion fuel is vaporized ahead of diesel particle and it cause decrease of combustion temperature. Furthermore, research about the possibility of applicating Diesel-Water Emulsion fuels to commercial diesel engine is demanded in order to prove that Diesel-Water Emulsion fuel is able to apply commercial diesel engine without any replacement of equipments. This research analyzed applicable possibility of Diesel-Water Emulsion fuels to commercial diesel engine's fuel injection system refering injection and spray characteristics. In this research, there are 3 experiments, that is injection quantity, spray visualization, and injection rate. Diesel-Water Emulsion fuel has less injection quantities compared to diesel fuel, and spray penetration length is more longer than diesel. Furthermore, emulsion fuels have less dispersed than diesel fuel. In conclusion, comparing with diesel fuel with only spray characteristics, Diesel-Water Emulsion fuel has bad effects about dispersion and vaporization.

A Study on Combustion Characteristics of Diesel-water Emulsion with High Pressure Injection (고압분사 경유-물 혼합연료의 연소특성)

  • Jeong, Dae-Yong;Lee, Jong-Tai
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1435-1441
    • /
    • 2003
  • Combustion characteristics on diesel-water emulsion are analyzed in high pressure injection for several variables such as water content, injection pressure and injection timing. As a fact of well-known, maximum combustion pressure was decreased and ignition delay was elongated in accordance with increasing of water content. But these characteristics were enhanced with increase of injection pressure to high pressure. It was shown that combustion of neat diesel in case of injecting with 600bar is similar to that of 20 % diesel-water emulsion was injected at 1200 bar.

A Study on Spray Characteristics of Diesel-Water Emulsion with Ultra High Pressure (초고압 경유-물 혼합연료의 분무특성에 관한 연구)

  • Jeong, D.Y.;Lee, J.T.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 2003
  • Spray characteristics on diesel- water emulsion are analyzed in high pressure injection for several variables such as water content, injection pressure. Spray Patterns were visualized under various water content and injection pressures. Spray tip penetration was increased and spray angle decreased in accordance with increasing of water content. But these characteristics were enhanced with increase of injection pressure to high pressure.

  • PDF

Performance and Emission Studies in a DI Diesel Engine Using Wood Pyrolysis Oil-Bio Diesel Emulsion (목질계 열분해유-바이오 디젤 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the WPO. One of the easiest way to adopt WPO to diesel engine without modifications is emulsification of WPO with diesel or bio diesel. In this study, a DI diesel engine operated with diesel, bio diesel (BD), WPO/BD emulsion was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by WPO/BD emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation.

Combustion Characteristics of MDO and MDO Emulsion in Automotive Diesel Engine (선박 디젤유 및 선박 디젤유 에멀젼을 이용한 자동차용 디젤엔진의 연소특성)

  • Park, Jin-Kyu;Oh, Jung-Mo;Kim, Hyung-Ik;Lee, Chang-Hee;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.945-951
    • /
    • 2012
  • A water emulsion fuel can be used to reduce soot and NOx emissions simultaneously because it has a lower combustion temperature and better fuel atomization owing to the evaporative latent heat and microexplosion of water. Moreover, it can be used without making special modifications to conventional diesel engines. Therefore, this fuel has attracted considerable research attention. In addition, lower-grade fuels are being considered for use in conventional engines because of an increase in oil prices. In this study, we investigated the combustion and exhaust characteristics of MDO (marine diesel oil), which has a lower grade than common diesel oil, and ME (MDO water emulsion) under various test conditions in an automotive diesel engine.

Feasibility Study of Using Wood Pyrolysis Oil in a Diesel Engine (목질 열분해유의 디젤 엔진 적용성 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Lim, Gi-Hun;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.152-158
    • /
    • 2011
  • Fast pyrolysis of biomass is one of the most promising technologies for converting biomass to liquid fuels. The pyrolysis oil, also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is the use of BCO/diesel emulsions. In this study, a diesel engine operated with diesel, bio diesel (BD), and BCO/diesel emulsion was experimentally investigated. Performance and emission characteristics of a diesel engine fuelled by BCO/diesel emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion especially in the injection system.

It's effects for engine emission of water/oil emulsified fuel (Water/Oil 에멀젼 연료가 배출가스에 미치는 영향)

  • Kim, Moon-Chan;Lee, Chang-Suk
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.159-166
    • /
    • 2008
  • In this study, the characteristics of emulsified fuel and engine emissions were studied. Emulsified fuel which composed of water and diesel was manufactured by using homogenizer and ultrasonic generator. Engine emissions were studied whit engine dinamometer. In emulsified fuel, density and viscosity were increased with increasing water contents, but viscosity was decreased over 60% of water in emulsion fuel. The emulsion type of W/O changed to that of O/W over 60% of water in emulsion fuel. In the results of engine dinamometer test, NOx concentration and smoke density were reduced with increasing water contents in emulsified fuel but reciprocal in the case of THC, CO. Temperature and power were reduced with increasing water contents in emulsion fuel. In conclusion, it seemed that using emulsified fuel for diesel engine was effective for reducing NOx concentration and smoke density.

The Exhaust Gas Reduction of Diesel Engine by MDO (Marine Diesel Oil) Emulsion Fuel (MDO (Marine Diesel Oil) 에멀젼 연료에 의한 디젤엔진의 배출가스 저감)

  • Kim, Moon-Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.476-482
    • /
    • 2014
  • In this study, the characteristics of emulsified fuel and engine emissions were studied with engine dynamometer. Microexplosion took place in the combustion chamber. While combustion, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water content in emulsion fuel. The power also decreased according to the increment of water content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 17% moisture content, it was achieved 24% reduction in NOx production, 76% reduction in smoke density, 11% reduction of $SO_2$ and 13% reduction in power loss.

A study of Stability of Emulsion Fuel (에멀젼 연료의 안정성에 대한 연구)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1330-1343
    • /
    • 2020
  • In this study, emulsion fuel which contained water of 10 ~ 20% was prepared mixed with water and MDO(Marine Diesel Oil) which largely used in near sea. Diffusion stability of emulsion fuel was measured. Diffusion stability was measured at 30℃, 45℃, and 60℃ for 10 days respectively. The stability of the emulsion fuel was stabilized in the order of MDO-10 > MDO-13 > MDO-16 > MDO-20 and it means that the stability of the emulsion fuel was found to be stable in the order of low water content. Meanwhile, an engine dynamo-meter was used to test whether the manufactured emulsion fuel was actually available in the engine. The emulsified MDO emulsion fuel could be used as fuel for ships. For samples with more than 16% water added emulsion fuel, smoke was reduced by more than 50% in the load area of more than 50%, and nitrogen oxides were reduced by 20%.

Performance and Emission Studies in a DI Diesel Engine Fuelled with Diesel-Pyrolysis Oil Emulsion (디젤-열분해유 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan;Kim, Hoseung;Kim, Taeyoung;Woo, Sejong;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • Pyrolysis oil (PO), also known as Bio crude oil (BCO), has the potential to displace significant amounts of fuels that are currently derived from petroleum sources. PO has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of PO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the PO. One of the easiest way to adopt PO to diesel engine without modifications is emulsification of PO with the fuels that has higher cetane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel. Thus, to stabilize a homogeneous phase of diesel-PO blends, a proper surfactant should be used. In this study, a DI diesel engine operated with diesel and diesel-PO emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by diesel-PO emulsions were examined. Results showed that stable engine operation was possible with the emulsions and engine output power was comparable to diesel operation.