• Title/Summary/Keyword: Diesel vehicles

Search Result 368, Processing Time 0.032 seconds

A Study of Driving Pattern of City-bus in the City of Seoul (서울시 도시형 버스의 추행패턴에 관한 연구)

  • 정남훈;이우택;선우명호;이영재;엄명도
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.55-65
    • /
    • 2002
  • Emission from road traffic is one of the major sources of air pollution, and provides some undesirable effects on the atmspheric environment and human health. In the city of Seoul, the higher portion of diesel vehicles runs compared with that of other countries. Emission from the diesel vehicles is much higher than that of other vehicles. In this study, the driving pattern of city-bus in Seoul is investigated through on-road vehicle test and compared with the test modes of other countries in order to examine appropriateness of the present test mode that is taken in our country.

Analysis on Vehicle Fires Caused by Damage of Diesel Particulate Filter (DPF) (매연저감장치 손상에 기인한 차량화재 사고사례 분석)

  • Song, Jae-Yong;Sa, Seung-Hun;Nam, Jung-Woo;Cho, Young-Jin;Kim, Jin-Pyo;Park, Nam-Kyu
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.70-76
    • /
    • 2012
  • This paper deal with vehicle fire caused by damage of diesel particulate filter (DPF) on diesel passenger vehicles. In order to reduce particulate matters included exhaust gases, a DPF in the exhaust system were installed diesel vehicles. A DPF was broken by excessively trapped particulate matters, regeneration error with a malfunction of ECU and defect of suction system such as swirl valve. If the DPF was broken, hot exhaust gases was released to the bottom of vehicle and released hot exhaust gases lead to occur the fire through combustible materials around the exhaust system. When a fire happened in the diesel vehicle caused by damage of DPF, silicate inorganic compounds were attached to the exhaust ventilation pipe and muffler. The silicate inorganic compounds were created by DPF combustion consisting of raw material ceramics. If the silicate inorganic compounds attached to the tail pipe in the diesel passenger vehicles, its fire cause will be assumed damage of DPF.

Evaluation of Accelerated Retirement Program for In-use Diesel Vehicles based on their NOx Emission Characteristics (노후 운행경유차의 NOx 배출특성분석 및 조기폐차대책을 통한 삭감 방안 검토)

  • Keel, Jihoon;Lim, Yunsung;Kim, Hyungjun;Roh, Hyungu;Yun, Boseop;Lee, Sangeun;Lee, Taewoo;Kim, Jeongsoo;Choi, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.122-128
    • /
    • 2017
  • Currently, the proportion of diesel vehicles in all automobile has grown significantly over the past few years. Air pollutant also grew up and became a social problem. In particular, the issue of NOx emissions caused by NOx high emission in real driving has become a global issue. Despite the fact that the regulatory and reduction project of the new vehicle is actively carried out, there are no existence regulations of In-use diesel vehicle's NOx emission. Therefore, the emission characteristics of the in-use diesel vehicles were investigated to seek ways to reduce NOx emissions in this study. The test targets were used in 237 close inspection of exhaust gases and model year varied from 1996 to 2011. However, the classification of emissions by emission standards differed considerably from NOx emissions. This means that the selection method for early retirement targets should be converted from model year to amount of emissions. If the current early retirement program was applied to the existing system, pre-Euro 3 was 22.530 g/km and Euro 4 was 21.810 g/km to NOx reduction. However, when the vehicle was changed to high emission target vehicle, NOx reduction increase maximum 84.705 kg/yr. According to the study results, an effective reduction in NOx emissions can be achieved if an earlier target in expanded to Euro 4 vehicles.

Physico-Chemical Characterization of Black Carbon Emitted from Coal-fired Power Plant, Charcoal Kiln and Diesel Vehicle (석탄화력 발전소, 숯가마, 디젤차량에서 배출되는 Black Carbon의 물리화학적 특성화 연구)

  • Saixiyaletu, Saixiyaletu;Kim, Jin Young;Shim, Shang-Gyoo;Jin, Hyoun Cher;Kim, Jong Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.152-162
    • /
    • 2013
  • The physico-chemical characteristics and nanostructure of the aerosol samples from a coal-fired power plant, a charcoal kiln and diesel vehicles were investigated with focusing on black carbon (BC). Aerosols from the coal-fired power plant were mostly comprised of mineral ash spheres which are heterogeneously mixed. The main components of the aerosols from coal-fired power plant were calcium compounds, iron oxide, alumino-silicate without BC. The typical combustion-generated BC which shows the shape of bunch of grapes with 20~50 nm particles which were detected in aerosol particles from diesel vehicles. The nanostructure of each BC particle shows the shape of concentric circles which is comprised of closely-packed graphene layers. Aerosols from charcoal kiln were likely condensed organic carbon generated from the low-temperature combustion process.

A Study on Exhaust Gas Reduction By K-7 Mode of DOC (DOC의 K-7 Mode에 의한 배기가스 저감에 관한 연구)

  • 백두성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.136-142
    • /
    • 2000
  • With the significant growth of the number of vehicles environmental problems is raised. NOx SOx, and PM emissions in diesel powered vehicles are larger than that in gasoline because the development of pollutants reduction techniques has not been yet achieved. So it is need to develop after-tratment or to convert into alternative fuel to satisfy emission regula-tion. Among the after-treatment systems to reduce the diesel emissions studies with diesel oxidation catalyst(DOC) are done greatly. In this study using DOC reduction efficiency with the change of temperature and catalyst loading was calculated through measurements of CO, HC, PM. and SOX.

  • PDF

Management of Cancer Risk Caused by Motor Vehicle in a Large City (대도시 자동차 배출가스의 발암위해 관리 방안)

  • 김강석
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.1_2
    • /
    • pp.27-31
    • /
    • 1998
  • Motor vehicle exhaust is the major cause to the air contamination in Seoul. It includes many toxic chemicals to human health such as aidehyde, PAHs, benzene, xylene, toluene, benzo[a]pyrene, nickel, arsenic and cadmium in gasoline exhaust and formaldehyde, PAHs, 1,3-butadiene, benzene and particulate matter in diesel exhaust. Some chemicals out of them are classified as a human carcinogen. Many large diesel vehicles such as buses and trucks are drivened frequently in Seoul so that the air in Seoul is seriously contaminated by diesel exhaust, especially particulate matter. The amounts of particulate matter from large diesel vehicles may be estimated to be more than 50% of small dust in Seoul. The particles of particulate matter are coated with many toxic chemicals and some of these are considered as a human carcinogen. The cancer risk has to be throughly managed because the population density of Seoul is very high. Government should list hazardous air pollutants in Seoul, assess the exposure of people to toxic pollutants, especially carcinogens and manage human health risk.

  • PDF

Control Measures for Air Pollutant Emissions from In-Use Light-Duty Diesel Vehicles Regarding their Emission Control Technologies (배출허용기준 대응기술을 고려한 국내 소형 경유 운행차의 대기오염물질 관리 방안)

  • Lee, Taewoo;Park, Hana;Park, Junhong;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.327-338
    • /
    • 2014
  • The objective of this study is to enhance the effectiveness of Korean Inspection and Maintenance (I/M) program. Three main tasks are: to measure pollutant emissions of in-use light-duty diesel vehicles (LDVs); to evaluate the validity of existing smoke control scheme for low-smoke-emitting vehicles, which have diesel particulate filters, DPF, to meet stringent Euro-5 emission limits; and to assess the necessity and the benefit of $NO_x$ inspection, which is not involved in current I/M program. We measured second-by-second smoke, particulate and gaseous emissions of 27 LDVs using opacity smoke meter, photo-acoustic soot sensor, and portable emissions measurement system, respectively, under the Korean I/M test driving cycle, KD-147. We find that the DPF plays a key role in controlling soot, which can be considered as black carbon contained in particulate matter. Thus, from an I/M perspective, we believe smoke inspection strategies for Euro-5 diesel vehicles should be more focused on the capability of detecting DPF malfunctions or failures, in order to keep DPF properly functional. Fleet averaged distance-specific $NO_x$ emissions are consistently higher than corresponding emission limits, and the values are similar among pre-Euro-3, Euro-3, and Euro-4 vehicle fleets. These findings indicate that the $NO_x$ inspection should be incorporated into current I/M program in order to manage urban $NO_x$ emissions. This research allows the Korean I/M program keep pace with developments in vehicle technologies, as well as the increased emphasis on $NO_x$ with respect to air quality and human health.

study of standardization on the rollingstock's operational control box (철도차량 운전실제어대 설계기준 마련 연구)

  • Lhim, Jea-Eun;Jung, Do-Won;Kim, Chi-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2139-2144
    • /
    • 2008
  • There are eight kinds of railroad vehicles such as KTX, PP(Push-Pull), NEL(New Electric Locomotive), EL(Electric Locomotive), DL(Diesel Locomotive), CDC(Commuter's Diesel Car), VVVF(Variable Voltage Variable Frequency) and Resistance Control Car that Korail corporation presently runs, and a variety of vehicles just like EMU(Electric Multiple Unit) and DMU(Diesel Multiple Unit) currently developed and accepted are running in the near future. However, There is still no design standard of the control stand of cockpit and the same compatibility of forms and control unit arrangements for locomotive engineers because no one has tried to approach in an ergonomic way. It can cause Locomotive engineers to make errors using the machinery. when the new vehicles are adopted, The efficiency of operation will quite fall down due to the separate training of the engineers. Therefore, We'd like to improve the accuracy of manipulating the machinery used by the engineers at all times according to the design standard of ergonomic technology and safety engineering and increase the operational efficiency and the safety of railroad vehicles in order to handle the problems as quickly as we can in an emergent situation.

  • PDF

Engine Management System remodeling from diesel to CNG system on used diesel truck(3.3L) (노후 경유자동차의 천연가스 자동차로의 개조기술 개발)

  • Lee, J.S.;Kim, B.G.;Chea, J.M.;Han, J.O.;Na, P.C.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3335-3340
    • /
    • 2007
  • The government have been tightening EM regulation gradually but the effect is not good because of rapid increase of vehicles. And medium & heavy duty diesel vehicles, even though the number is small, exhaust very large pollutants(about over 50%). Especially it is more severe about old trucks and buses. Accordingly, CNG vehicle and the retrofit of diesel to CNG must be an alternative in order to protect the atmospheric environment and improve the air quality in the metropolitan area. The main object of this study is to secure the retrofit technology of diesel to CNG vehicle and the management system of CNG engine. we passed the government emission certification test. In addition to this, the mass production for retrofit is also studied. Results of emission and durability test for certification are as follows; there was no problem during 30,000km vehicle durability test and good emission levels satisfying the regulation.

  • PDF

Analysis of Diesel Nano-particle Characteristics for Different Vehicle Test Mode in Diesel Passenger Vehicle (디젤 승용차량 시험모드별 극미세입자 배출 특성 해석)

  • Lee, Jin-Wook;Jung, Min-Won;Jeong, Young-Il;Cha, Kyong-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.114-120
    • /
    • 2008
  • Recently, the nano-PM's number concentration emitted by diesel internal combustion engine has focused on attention because this particulate matters are suspected being hazardous of human health. In this study, The nano-PM mass and size of diesel passenger vehicles were measured on chassis dynamometer test bench. The particulate matters(PM) emissions of these vehicles were investigated by number concentration too. A condensation particle counter(CPC) system was applied to measure the particle number and size concentration of diesel exhaust particles at the end of dilution tunnel along the NEDC(ECE15+EUDC) and CVS-75 vehicle test mode. As the research result, the characteristic of vehicle test mode on the diesel nano-particle number and size distribution was investigated in this study.