• Title/Summary/Keyword: Diesel removal

Search Result 162, Processing Time 0.021 seconds

Effects of Hydrophobic Chain Structure of Nonionic Surfactanets on Surfactant Adsorption and Diesel Removal from Kaolin Soil (비이온계 계면활성제의 소수성 구조가 카올린 토양에서 흡착 및 경유 제거에 미치는 영향)

  • 김종성;이기세
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.17-24
    • /
    • 1999
  • The effects of hydrophobic chain length and its structure of nonionic surfactants on surfactant adsorption and contaminated diesel removal were studied in kaolin soil. Hydrocarbon chain length and double bond in hydrophobic tail group of nonionic surfactants affected surfactant adsorption and diesel removal efficiency from kaolin soil. The degrees of surfactant adsorption and diesel removal were closely related each other. Among nonionic surfactants we studied, surfactants with shorter hydrophobic chain length and higher HLB value showed lower degree of adsorption and higher efficiency of diesel removal. The existence of unsaturated carbons in the structure of hydrophobic chain enhanced diesel removal by reducing surfactant adsorption to kaolin soil. The best diesel removal was obtained after adsorption saturation was reached. If surfactant concentration was higher than a critical value, diesel removal was reduced probably because of precipitation. liquid crystal formation, or coacervation of surfactants at high concentration.

  • PDF

Proteomic Analysis of Diesel Oil Biodegradation by Bacillus sp. with High Phosphorus Removal Capacity Isolated from Industrial Wastewater

  • Hee-Jung Kim;Deok-Won Kim;Jin-Hyeok Moon;Ji-Su Park;Eun-Ji Oh;Jin Yoo;Deok-Hyun Kim;Sun-Hwa Park;Keun-Yook Chung
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.649-659
    • /
    • 2023
  • This study was initiated to evaluate the phosphorus (P) removal and diesel oil degradation by bacteria isolated from industrial wastewater. The bacteria isolated were identified as Bacillus sp. The P removal efficiencies by Bacillus sp. were 99% at the initial 20 mg/L P concentration. The diesel degradation efficiencies by Bacillus sp. were 86.4% at an initial 1% diesel concentration. Lipophilicity by bacteria was the highest in the log phase, whereas it was the lowest in the death phase. As the diesel was used as a carbon source, P removal efficiencies by Bacillus sp. were 68%. When glucose, acetate, and a mixture of glucose and acetate as second carbon sources were added, the diesel degradation efficiencies were 69.22%, 65.46%, and 51.46%, respectively. The diesel degradation efficiency was higher in the individual additions of glucose or acetate than in the mixture of glucose and acetate. When P concentration increased from 20 mg/L to 30 mg/L, the diesel degradation efficiency was increased by 7% from 65% to 72%, whereas when P concentration was increased from 30 mg/L to 40 mg/L, there was no increase in diesel degradation. One of the five proteins identified by proteome analysis in the 0.5% diesel-treated samples may be involved in alkane degradation and is known as the cytochrome P450 system. Also, two of the sixteen proteins identified in the 1.5% diesel-treated samples may be implicated in the fatty acid transport system and alcohol dehydrogenation.

Influence of Co-Surfactants to Surfactant-Enhanced Remediation of Diesel-Contaminated Sandy Soil

  • 김종성;김우정;이은영;이기세
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.149-152
    • /
    • 2000
  • The effects of selected co-surfactants on diesel removal from sandy soil were studied to increase diesel recovery from the soil by the surfactant-enhanced remediation of diesel-contaminated soil. The capability of co-surfactant for enhancing removal efficiency can be related with the interaction between its structural character and the structural peculiarity of nonionic surfactant. In the case of Tween 80, hexanol showed the great improvement in diesel recovery. Efficiency of diesel recovery decreased as hydrocarbon chain length of cosurfactant decreased. Higher content of hexanol further increased diesel recovery, but there was no significant improvement in the case of butanol and pentanol.

  • PDF

Simultaneous Removal of Heavy Metals and Diesel-fuel from a Soil Column by Surfactant Foam Flushing (계면활성제 거품(Foam)을 이용한 토양칼럼 내 유류 및 중금속 동시 제거 연구)

  • Heo, Jung-Hyun;Jeong, Seung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.90-96
    • /
    • 2011
  • Simultaneous removal of heavy metals (Cd, Pb) and diesel-fuel from a soil column was evaluated by respectively flushing with sodium dodecyl sulfate (SDS) solution, mixture of SDS and sodium iodide (SDS + NaI), and surfactant foam (SDS + NaI foam). First, this study evaluated these flushing methods to the heavy metals only-contaminated soil for removal of heavy metals from the heavy-metal only contaminated soil column. After 7 pore volume flushing of the soil column, Cd removal efficiencies from the soil were 40% by SDS solution, 50% by SDS + NaI mixture, and 60% by surfactant foam. The flushing results implied that anionic surfactant and ligand can be efficiently applied to extraction of Cd from the heavy metal contaminated soil. Furthermore, surfactant foam flushing showed an increased flushing efficiency with enhancing the contact between surfactant solution and soil. However, Pb removal efficiency by these flushing methods did not show any difference unlike those of Cd. Second, this study eventually evaluated flushing methods for simultaneous removal of heavy metals and diesel-fuel from the soil column with 7 pore volume flushing. Diesel-fuel removal efficiencies were 50% by SDS + NaI flushing and 90% by SDS + NaI foam flushing. Cd removal efficiency by the foam flushing reached to 80% which was higher than the result of the previous heavy metals onlycontaminated soil experiment. This result implied that diesel-fuel could act as a metal-solvent while it contacted to heavy metals present in the soil. This study clearly showed that surfactant foam flushing simultaneously removed heavy metals and diesel fuel from the soil column.

A Study on Remediation of Diesel-Contaminated Soil by Biosurfactant- Enhanced Soil Washing (생물계면활성제를 이용한 디이젤 오염토양세척기술에 관한 연구)

  • 문혜준;임영경;김윤관;주춘성;방기연;정욱진;이승우
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.13-22
    • /
    • 2002
  • Soil washing by surfactants is a technology to enhance mobilization and subsequent degradation of oil pollutants by reducing the surface tension of pollutants which is combined with soil. In this study, biosurfactant, rhamnolipid was produced from Pseudomonas aemginosa ATCC 9027 which had an excellent biodegradable activity in soil without causing secondary pollution. Effects of chemical surfactants on the removal of diesel from diesel-contaminated soil were compared to those of biosurfactants including rhamnolipid. Diesel removal efficiency by rhamnolipid extracted from P. aeruginosa culture broth was over 95% in both batch and column washing test in 5,000ppm diesel-contaminated soil with 1% surfactants after washing for 24 hours. On the contrary, the results of chemical surfactants were below 50∼80%, The chemical surfactants with HLB value(8∼15) showed more then 75% efficiency of diesel removal. But, when the HLB values were below 8 or over 15. their efficiency were observed as less then 60% of diesel removal. Rhamnolipid, biologically produced surfactants, may also be promising agent for enhancing diesel removal from contaminated soil.

An Experimental Study on NOx Reduction in Exhaust Gas from Agricultural Diesel Engine with Plasma and Catalyst (플라즈마와 촉매를 이용한 농용 디젤기관 배기가스 중의 NOx 저감에 관한 실험적 연구)

  • 이승규;조기현;황의현
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.465-472
    • /
    • 1999
  • To remove nitrogen oxides(NOx) in exhaust gas of diesel engine, three-way catalytic process with plasma discharger has great possibilities. Characteristics of NOx removal depends on NO conversion to NO$_2$and/or HNO$_3$due to high activation energies for NO oxidation and reduction. NOx removal efficiency by using three-way catalytic with plasma discharger indicated about 50% at 40watt power consumption condition.

  • PDF

An Experimental Study on Effect of Plasma for Exhaust Emissions in Small High-Speed Diesel Engine (소형 고속 디젤엔진의 배기 배출물에 미치는 플르즈마의 영향에 관한 실험적 연구)

  • 백태실
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.755-760
    • /
    • 1999
  • To remove nitrogen oxides(NOx) in exhaust gas of diesel engine three-way catalytic process with plasma discharger has great possibilities. Characteristics of NOx removal depends on NO conver-sion to $NO_2$ and /or $HNO_3$ due to high activation energies for NO oxidation and reduction, NOx removal efficiency by using three-way catalytic with plasma discharger indicated about 50% at 40watt power consumption condition.

  • PDF

An Experimental Stduy on NOx Reduction in Exhaust Gas from Diesel Engine with Plasma (플라즈마를 이용한 디젤엔진 배기가스 중의 NOx 저감에 관한 실험적 연구)

  • 조기현;황의현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.83-90
    • /
    • 1999
  • To remove nitrogen oxides(NOx) in exhaust gas of diesel engine, three-way catalytic process with plasma discharger has great possbilities. Characteristics of NOx removal depends on NO conversion to $NO_2$ and/or $HNO_3$ due to high activation energies for NO oxidationand reduction. NOx removal efficiency by using three-way catalytic with plasma dischager indicated about 50% at 40 watt power consumption condition.

  • PDF

디젤오염토양복원을 위한 고온공기 주입/추출 공정의 토양 파일 공법에의 적용 연구

  • 박민호;박기호;홍승모;고석오
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.63-67
    • /
    • 2004
  • A field pilot study on remediation of diesel-contaminated soil by hot air injection/extraction process constructing soil piling system was conducted to evaluate the effects of hot air on the removal of diesel and each constituent. After the heating process of 2 months, the equilibrium temperature of soil reached to 10$0^{\circ}C$ and soil TPH concentration was reduced to about 72% against the initial concentration. Additional extraction process of 2 months induced the continuous extraction of residual diesel and the increment of microbial activity, which made soil TPH concentration reduced to 95%. In addition biological removal of non volatile constituents in diesel was verified indirectly and the removal pattern of each DRO(diesel range organic) as soil temperature was explained.

  • PDF

Bio Sparging Column Experiment for Remediation of Diesel Contaminated Groundwater (디젤오염 지하수 정화를 위한 공기주입정화법 칼럼 실험)

  • Chang Soon-Woong;Lee Si-Jin;Song Jung-Hoon;Kwon Soo-Youl
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1059-1065
    • /
    • 2004
  • Bio sparging experiments were conducted in a laboratory column to investigate the potential removal of diesel contaminated groundwater. The objectives in this study were (a) to determine the extent of diesel degradation in laboratory columns under supplement of nutrient; (b) to determine the effect of variation of air flow in the removal of diesel and (c) to evaluate the potential enhancement of diesel degradation as a function of temperature. Our results showed that the nutrient supplement and higher air flow greatly enhanced diesel degradation. However, the variation of water temperature examined slightly increased degradation rate of diesel fuel.