• Title/Summary/Keyword: Diesel oil

Search Result 663, Processing Time 0.031 seconds

Toxicity Test of Biodiesel and Biodiesel-derived Neopentyl Polyol Ester Lubricant Oil Base Using Microalgae (미세조류를 이용만 바이오디젤과 바이오디젤 유래 Neopentyl polyol Ester 윤활유 베이스의 독성테스트)

  • Jung Haeyoung;Lee Jung-Heon;Yoo Jeong Woo;Kim Eui Yong;Chae Hee Jeong
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.55-59
    • /
    • 2005
  • Toxicity test for biodiesel (BD), biodiesel-derived neopentyl polyol ester (NPE) lubricant oil base, lubricant oil for diesel engine (LODE) and petroleum diesel (PD) was carried out using microalgae, Chlorella vulgaris. According to the method of OECD 201, the $EC_{50}$ values of BD and NPE were estimated as 84 and 69 mg/L, respectively, which indicates that these compounds are classified as slightly toxic compounds. The $EC_{50}$ values of LODE and PD were measured as 42 and 24 mg/mL, respectively, showing that these compounds are considered as moderately toxic compounds.

Engine performance and emission reduction characteristics of biodiesel blended diesel fuel in a passenger car diesel engine (바이오디젤 혼합연료를 적용한 승용디젤엔진의 성능 및 배출물 저감특성)

  • Jho, Shi Gie
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.181-185
    • /
    • 2014
  • This paper describes the effect of canola biodiesel blended fuel on the combustion and emission characteristics in a four cylinder CRDI(Common-rail direct injection) diesel engine. In this study, using the biodiesel fuel(20%,40% of biodiesel-canola oil and 80%, 60% of ULSD(ultra low sulfur diesel) by volume ratio with change of engine speed and injection pressure. The experiment results of increasing biodiesel ratio fuel show that NOx emissions increased. However, soot emission were reduced BC fuels compared to ULSD. Soot emissions largely increased at low injection pressure.

Emissions Limits and Measures for Reducing Exhaust Emissions in Marine Diesel Engines (박용 디젤기관의 배기규제 및 배기 배출물 저감 대책)

  • 배명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.471-486
    • /
    • 2001
  • The principal trends in the course of emission control legislation are reviewed in this paper. In order to keep such a regulation, moreover, an inquiry ito the concrete technical possibility is conducted through review articles, Also, the composition of exhaust gases emitted from a marine diesel engine are investigated as several samples and the measures that can satisfy the value of regulation are handled with laying stress on the control methods discussed to date. It was concluded that various combined systems can be made to reduce NOx emissions without deteriorating substantially navigation costs since many technologies for reducing NOx emissions are being developed. All heat engines suffer from SOx emissions. There are two methods for reducing SOx emissions: desulfurization from exhaust gas and removal of sulfur composition from fuel oil. However it is necessary to watch the development of these technologies to evaluate which method is more favorable. Heat engines have a big problem in the regulation of environmental pollution from exhaust emissions. In the near future, however, diesel engines may be superior to other heat engines, owing to the high thermal efficiency, although the sales of individual models in dises engines may be prosperous and declining.

  • PDF

Influence of Driving Pattern on Regeneration Performance of Continuously Regenerating Diesel Particulate Filter (연속재생 DPF의 재생 성능에 미치는 차량 운행패턴의 영향)

  • Hwang, Jin-Woo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.358-364
    • /
    • 2009
  • This paper is to investigate the influence of driving patterns of slow and high speed vehicles on the performance of continuously regenerating diesel particulate filter(DPF) system matched with operating conditions in field application. The DPF performance test for field application was carried out for two identical DPFs installed to slow and high speed vehicles. A slow speed vehicle was selected among local buses which have driving patterns to repeat running and stop frequently, while a high speed vehicle was prepared to have long route of high speed over 60km/h like inter-city buses. In this test, the regeneration performance on the DPF of slow speed vehicle deteriorated because of high soot load index(SLI) in spite of same balance point temperature(BPT) distribution for high speed vehicle. The DPF of slow speed vehicle melted in the end because the rapid increase of back pressure caused high temperature over $1200^{\circ}C$ in the ceramic wall of DPF. The PM components like ash collected to the filter in the DPF were analyzed in order to investigate the cause of the defect and provide an operation performance of DPF system. In the result of the analysis, high levels of lubrication oil ash(Ca, Mg, P, Zn) were detected.

A Study of Upgrading of Pyrolysis Wax Oil Obtained from Pyrolysis of Mixed Plastic Waste (혼합폐플라스틱 열분해 왁스오일의 고급화 연구)

  • Lee, Kyong-Hwan;Nam, Ki-Yun;Song, Kwang-Sup;Kim, Geug-Tae;Choi, Jeong-Gil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.321-324
    • /
    • 2009
  • Upgrading of pyrolysis wax oil has been conducted in a continuous fixed bed reactor at $450^{\circ}C$, 1hour, LHSV 3.5/h. The catalytic degradation using HZSM-5 catalyst are compared with the thermal degradation and also was studied with a function of experimental variables. The raw pyrolysis wax oil shows relatively high boiling point distribution ranging from around $300^{\circ}C$ to $550^{\circ}C$, which has considerably higher boiling point distribution than that of commercial diesel. The product characteristic from thermal degradation shows a similar trend with that of raw pyrolysis wax oil. This means the thermal degradation of pyrolysis wax oil at high degradation temperature is not sufficiently occurred. On the other hand, the catalytic degradation using HZSM-5 catalyst relative to the thermal degradation shows the high conversion of pyrolysis wax oil to light hydrocarbons. This liquid product shows high gasoline range fraction as around 90% fraction and considerably high aromatic fraction in liquid product. Also, in the catalytic degradation the experimental variable such as catalyst amount and reaction temperature was studied.

  • PDF

Isolation and Characterization of Psychrotrophic and Halotolerant Rhodococcus sp. YHLT-2

  • Ryu Hee-Wook;Joo Yang-Hee;An Youn-Joo;Cho Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.605-612
    • /
    • 2006
  • A psychrotrophic bacterium was isolated from oil-contaminated groundwater and identified as Rhodococcus sp. YHLT-2. Growth was observed at the temperature of 4 to $30^{\circ}C$. This strain degraded various petroleum hydrocarbons such as crude oil, diesel oil, and gasoline over the whole range of temperatures tested. The Rhodococcus sp. YHLT-2 was capable of growing even at $4^{\circ}C$, exhibiting 90% of oil biodegradation after 20 days. Degradation of crude oil occurred at low temperature in nature. This strain was also able to grow at 7% NaCl, and utilized not only short chain alkenes $(C_9\;to\;C_{12})$, but also a broad range of long chain alkenes $(C_{19}\;to\;C_{32})$ present in crude oil at $4^{\circ}C$. The Rhodococcus sp. YHLT-2 is expected to be of potential use in the in situ bioremediation of hazardous hydrocarbons under low-temperature and high-salt conditions.

An Experimental Study on Evaporation and Ignition of the Single Droplet on Hot Surface (단일액적어류의 증발 , 착화에 관한 실험적 연구 - 가열 표면상에 적하할 경우 -)

  • Jang, Jae-Eun;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.4
    • /
    • pp.418-429
    • /
    • 1992
  • Recently, many researchers make a great effort to develop high efficient marine diesel engines using low grade heavy oil, and also study substitution fuel oil for engines and boilers. In case of Fisheries Vessels, we need to know that fish oil can be substituted for fuel oil. Therefore, it is studied that evaporation, ignition and combustion phenomena of the single droplet of fish oils (i.e., Sardine fish oil, File fish oil and Alaska pollac oil) on heated plane surface to evaluate appropriateness as substitution oil. Methanol and light oil are tested simultaneously to help the evaluation on these Fish oils. The results are summarized as follows: 1. The type of evaporation and combustion is spherical evaporation in case of methanol and light oil. And fish oil blended with light oil was finished after spherical evaporation happen when high temperature. 2. Ignition of Pure fish oil was shorter than that of fish oil blended with light oil. 3. Heat transferred to droplet could make qualitative comparison by contact diameter of droplet with hot surface as time changes. Life time of droplet according to the change of heated surface temperature was greatly influenced by droplet contact condition on the heated surface. 4. As far as combustion phenomena was concerned, apparent diameter of the fish oil droplet increased after ignition and decreased suddenly by internal boiling of droplet. 5. Three fish oils had similar phenomena on the evaporation, ignition and combustion. 6. Evaporation and combustion feature of fish oil could not be shown by coefficient of evaporation velocity of droplet and coefficient of combustion velocity of droplet.

  • PDF

Synthesis and Lubricating Properties of Dimer Acid Derivatives Based on Used Vegetable Oil (폐식물유 기반 다이머산 유도체의 합성 및 경유의 윤활성능)

  • Lee, Sang Jun;Kim, Young-Wun;Yoo, Seung-Hyun;Kim, Nam-Kyun;Shin, Ji Hoon;Yoon, Byung-Tae
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.530-536
    • /
    • 2013
  • Vegetable oil-based dimer acid derivatives were prepared through a two-step procedure and their lubricating properties for diesel fuel were evaluated using high frequency reciprocating ring (HFRR) method to investigate wear scar diameter (WSD). Diels-Alder reaction at an elevated temperature transformed fatty acid to dimer acid, subsequently converted into dimer acid derivatives by esterification with methanol. It should be noted that the derivatives were dissolved well in diesel oil up to 1 wt%. After adding 120 ppm of the derivatives to pure diesel, the WSD significantly decreased to $300{\sim}05{\mu}m$, compared to $552{\mu}m$ of WSD in pure diesel. Dimer acid derivatives having carboxylic acid show superb in lubricating property which does not depend on the alkyl group in the derivatives.