• Title/Summary/Keyword: Diesel engine emission

Search Result 805, Processing Time 0.026 seconds

Investigation of the Combustion and Emission Characteristics of 1-Octanol/Diesel Fuel Blends in a Direct Injection Diesel Engine (직분사 디젤 엔진에서 1-옥탄올/경유 혼합 연료의 연소 및 배기 특성 연구)

  • CHEOL-OH PARK;JEONGHYEON YANG;BEOMSOO KIM;JAESUNG KWON
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.1
    • /
    • pp.69-76
    • /
    • 2023
  • An experimental study was conducted on a 4-stroke direct injection diesel engine to examine the combustion and emission characteristics of 1-octanol/diesel fuel blends. The concentration of 1-octanol in the fuel blends was 10%, 30%, and 50% by volume. Experiments were conducted by varying the engine torque from 6 Nm to 12 Nm at the same engine speed of 2,700 rpm. Results showed that the fuel conversion efficiency increased as the 1-octanol proportion increased under most experimental conditions. However, the brake specific fuel consumption increased due to the relatively low lower heating value of 1-octanol. The smoke opacity and the concentrations of NOx and CO emissions generally decreased with brake mean effective pressure as the 1-octanol proportion increased. On the other hand, the unburned hydrocarbon concentration increased with an ascending ratio of 1-octanol.

Effect of EGR Rate on Combustion and Emission Characteristics in a Single-cylinder Direct Injection Diesel Engine with Common-rail (직접분사식 커먼레일 단기통 디젤엔진에서 EGR율에 따른 연소 및 배기특성)

  • Heo, Jeong-Yun;Cha, June-Pyo;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.20-25
    • /
    • 2011
  • The purpose of this work is an experimental investigation of combustion and emission characteristics in DI diesel engine applied high EGR rate as a method of low-temperature combustion. In order to analyze the effect of EGR rate variation, a single-cylinder DI diesel engine was operated under various EGR rate conditions. In addition, injection timing was variously controlled to investigate the effect of injection timing in DI diesel engine using the cooled-EGR system. The NOx emissions were decreased in accordance with the increase of EGR rate. On the contrary, soot emissions were generally increased under applied EGR conditions. However, soot emissions were decreased in a few injection timings under high EGR rate conditions. The EGR results show that the ignition delay were increased by decreased oxygen concentrations in combustion chamber under the high EGR rate.

The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine (승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, Hyun-Gu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

Effects of the fuel injection system on combustion in a diesel engine (디젤기관의 연소에 미치는 분사계의 영향)

  • Kwon, S. I.;Kim, W.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.37-44
    • /
    • 1993
  • Fuel injection system is an important tool in the exhaust emission and performance of a diesel engine. Effects of the fuel injection system in diesel combustion was investigated experimentally by measuring the performance and analyzing the combustion phenomena in a D.I. diesel engine. The selected injection parameters were nozzle opening pressure, nozzle projection length, and nozzle spray angle. From the measured results, it is shown that the fuel injection pipe diameter is an effective means to improve engine performance in a middle and high speed range and the 2 stage spring nozzle holder has the advantage of increasing the engine performance due to the initial injection pressure in a low speed range. It has been also shown that increasing nozzle opening pressure resulted in decrease in smoke, but increase in NO$_{x}$ from the engine.e.

  • PDF

A Study on the Reduction of Diesel-Engine Emissions (디젤엔진 배기가스의 저감에 관한 연구)

  • Hur, Youn-Bok;Chung, Soon-Suk;Kim, Kwang-Soo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.11a
    • /
    • pp.245-252
    • /
    • 2012
  • Internal engine is the main power source of vehicle and is the main source of air pollution. To satisfy this getting rigorous emission regulation, it must be solved simultaneously the dilemma of reducing emission gas and increasing heat efficiency. Diesel engine is preferred compare with gasoline engine in aspect of energy consumption but it must be solved reducing the containing of NOx, CO and HC. In this study 1. Looking for alternative of performance improvement of Exhaust Gas Recirculation(EGR) which is emission gas reduction system, 2. Reducing malfunction of controlling emission gas 3. Made possible precision control.

  • PDF

Relationships between Characteristics of Emission Gases and Engine Load Condition of Diesel Locomotive Engine (디젤기관차의 출력과 배기가스 배출특성의 상관관계 연구)

  • Cho, Young-Min;Kwon, Soon-Bak;Park, Duck-Shin;Park, Eun-Young;Lim, In-Gwon
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1558-1563
    • /
    • 2007
  • The air pollution by the diesel locomotives has become serious environmental concern because the emission gases are exhausted without any further treatment. Recently, the public interest on the air pollutants emission reduction technology is increasing due to the establishment of 'Metropolitan Air Quality Preservative Law' and the regulation of local governments on the urban air quality. In this study, we measured the concentration of particulate matters and gaseous pollutants by using a scanning mobility particle sizer, a dust spectrometer, and a stack sampler upon various engine load condition. The results show that the amount of emitted air pollutants increased upon the increase of engine power. The development of new technology to reduce the air pollutants emission is urgently required.

  • PDF

An Effect in of the Bio-oil as an Alternative Fuel on the Performance of Diesel Engine (Bio-oil이 디젤기관의 기관성능에 미치는 영향)

  • Cho, Ki-Hyon;Chung, Hyung-Kil;Kang, Hyung-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.11-19
    • /
    • 2001
  • This study was carried out to investigate the feasibility of the used frying oil as a bin-oil which was one of the alternative fuel for diesel engine. From tests of engine performance, it was shown that the bio-oil and blends and the sufficient potential as alternative fuels of diesel engine except NOx and Smoke emission.

  • PDF

Effects of Injector Design Parameter on Nozzle Coking in Diesel Engines (디젤 엔진의 인젝터 설계 변수가 노즐 코킹에 미치는 영향 분석)

  • Kim, Yongrae;Song, Hanho
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.140-145
    • /
    • 2012
  • Recent common-rail injector of a diesel engine needs more smaller nozzle hole to meet the stringent emission regulation. But, small nozzle hole diameter can cause nozzle coking which is occurred due to the deposits of post-combustion products. Nozzle coking has a negative effect on the performance of fuel injector because it obstructs the fuel flow inside a nozzle hole. In this study DFSS (Design for six sigma) method was applied to find the effect of nozzle design parameter on nozzle coking. Total 9 injector samples were chosen and tested at diesel engine. The results show that nozzle hole diameter and K-factor have more effect on nozzle coking than A-mass and hole length. Large hole diameter and A-mass, small hole length and K-factor give more positive performance on nozzle coking in these experimental conditions. But, a performance about nozzle coking and exhaust gas emission shows the opposite tendency. Further study is needed to find the relation between nozzle coking and emission characteristic for the optimization of injector nozzle design.

Increase of diesel car raises health risk in spite of recent development in engine technology

  • Leem, Jong Han;Jang, Young-Kee
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.9.1-9.3
    • /
    • 2014
  • Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to $0.25{\mu}m$. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.

COMBUSTION STABILITY OF DIESEL-FUELED HCCI

  • Shi, L.;Deng, K.;Cui, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Homogeneous Charge Compression Ignition (HCCI) shows great potential for low $NO_x$ emission but is hampered by the problem of no direct method to control the combustion process. Therefore, HCCI combustion becomes unstable easily, especially at lower and higher engine load. This paper presents a method to achieve diesel-fueled HCCI combustion, which involves directly injecting diesel fuel into the cylinder before the piston arrives at top dead center in the exhaust stroke and adjusting the valve overlap duration to trap more high temperature residual gas in the cylinder. The combustion stability of diesel-fueled HCCI combustion and the effects of engine load, speed, and valve overlap on it are the main points of investigation. The results show that: diesel-fueled HCCI combustion has two-stage heat release rate (low temperature and high temperature heat release) and very low $NO_x$ emission, combustion stability of the HCCI engine is worse at lower load because of misfire and at higher load because of knock, the increase in engine speed aids combustion stability at lower load because the heat loss is reduced, and increasing negative valve overlap can increase in-cylinder temperature which aids combustion stability at lower load but harms it at higher load.