• Title/Summary/Keyword: Diesel engine

Search Result 2,435, Processing Time 0.032 seconds

Study on Performance and Emission Characteristics of CNG/Diesel Dual-Fuel Engine (CNG/Diesel 이종연료용 엔진의 성능 및 배출가스 특성에 대한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.869-874
    • /
    • 2011
  • In a CNG/diesel dual-fuel engine, CNG is used as the main fuel and a small amount of diesel is injected into the cylinder to provide ignition priming. In this study, a remodeling of the existing diesel engine into a CNG/diesel dual-fuel engine is proposed. In this engine, diesel is injected at a high pressure by common rail direct injection (CRDI) and CNG is injected at the intake port for premixing. The CNG/diesel dual-fuel engine had an equally satisfactory coordinate torque and power as the conventional diesel engine. Moreover, the CNG alternation rate is over 89% throughout the operating range of the CNG/diesel dual-fuel engine. PM emission by the dual-fuel engine is 94% lower than that by the diesel engine; however, NOx emission by the dual-fuel engine is higher than that by the diesel engine.

Performance and Emission Characteristics of a Diesel Engine Operated with Wood Pyrolysis Oil (목질 열분해유를 사용하는 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.102-112
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is emulsification of BCO with diesel and bio diesel. In this study, a diesel engine operated with diesel, bio diesel (BD), BCO/diesel, BCO/bio diesel emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by BCO emulsions were examined. Results showed that stable engine operation was possible with emulsions and engine output power was comparable to diesel and bio diesel operation. However, in case of BCO/diesel emulsion operation, THC & CO emissions were increased due to the increased ignition delay and poor spray atomization and NOx & Soot were decreased due to the water and oxygen in the fuel. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion and clogging especially in the injection system.

Feasibility Study of Using Wood Pyrolysis Oil in a Diesel Engine (목질 열분해유의 디젤 엔진 적용성 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Lim, Gi-Hun;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.152-158
    • /
    • 2011
  • Fast pyrolysis of biomass is one of the most promising technologies for converting biomass to liquid fuels. The pyrolysis oil, also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is the use of BCO/diesel emulsions. In this study, a diesel engine operated with diesel, bio diesel (BD), and BCO/diesel emulsion was experimentally investigated. Performance and emission characteristics of a diesel engine fuelled by BCO/diesel emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion especially in the injection system.

An Adaptive Speed Control of a Diesel Engine by means of a Model Matching method and the Nominal Model Tracking Method (모델 매칭법과 규범모델 추종방식에 의한 디젤기관의 적응속도제어)

  • 유희한;소명옥;박재식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.609-616
    • /
    • 2003
  • The purpose of this study is to design the adaptive speed control system of a marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. The authors proposed already a new method to determine efficiently the PID control Parameters by the Model Matching Method. typically taking a marine diesel engine as a non-oscillatory second-order system. But. actually it is very difficult to find out the exact model of a diesel engine. Therefore, when diesel engine model and actual diesel engine are unmatched as an another approach to promote the speed control characteristics of a marine diesel engine, this paper Proposes a Model Reference Adaptive Speed Control system of a diesel engine, in which PID control system for the model of a diesel engine is adopted as the nominal model and Fuzzy controller and derivative operator are adopted as the adaptive controller.

A Study on the Performance of Diesel Automobile Engine with Ultrasonic Fule Supply System(III) (On the case of Turbo-charging Diesel Engine) (초음파 연료공급장치용 디젤자동차의 성능 향상에 관한 연구(III) (과급 디젤기관에 대하여))

  • 최두석;이흥영;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.12-18
    • /
    • 1995
  • To improve the performance of diesel automobile engine, we designed new fuel supply system named ultrasonic fuel supply system. The performance test of diesel automobile engine carried out to examine possibility of practical use of ultrasonic fuel supply system to test engine. This paper deals with the comparative results of performance test of diesel automobile engine in terms of smoke, HC, SFC, PS, thermal, efficiency, torque. Following are obtained result. 1) In naturally aspirated diesel engine, when we use ultrasonic fuel supply system output, fuel consumptions are improved and exhaust gas reduced significantly. 2) In turbo-charging diesel engine both using of ultrasonic fuel supply system and using of conventional injector, engine performance and exhaust gas temperature are almost constant. 3) In turbo-charging diesel engine, when we use ultrasonic fuel supply system, NOx are emitted approximately 3.5% higher than total average. 4) In turbo-charging diesel engine, when we use ultrasonic fuel supply system, smoke and CO are 17% and 11.8% improved respectively.

  • PDF

Performance and Emission Studies in a DI Diesel Engine Using Wood Pyrolysis Oil-Bio Diesel Emulsion (목질계 열분해유-바이오 디젤 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the WPO. One of the easiest way to adopt WPO to diesel engine without modifications is emulsification of WPO with diesel or bio diesel. In this study, a DI diesel engine operated with diesel, bio diesel (BD), WPO/BD emulsion was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by WPO/BD emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation.

Performance and Emission Studies in a DI Diesel Engine Fuelled with Diesel-Pyrolysis Oil Emulsion (디젤-열분해유 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan;Kim, Hoseung;Kim, Taeyoung;Woo, Sejong;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • Pyrolysis oil (PO), also known as Bio crude oil (BCO), has the potential to displace significant amounts of fuels that are currently derived from petroleum sources. PO has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of PO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the PO. One of the easiest way to adopt PO to diesel engine without modifications is emulsification of PO with the fuels that has higher cetane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel. Thus, to stabilize a homogeneous phase of diesel-PO blends, a proper surfactant should be used. In this study, a DI diesel engine operated with diesel and diesel-PO emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by diesel-PO emulsions were examined. Results showed that stable engine operation was possible with the emulsions and engine output power was comparable to diesel operation.

A Study for Development of a Marine Diesel Engine from a 500Ps Commercial Vehicle Diesel Engine (500Ps급 상용차량 디젤엔진을 이용한 선박용 디젤엔진 개발 연구)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.125-131
    • /
    • 2013
  • This study was carried out to develop a diesel engine for marine propulsion. This marine diesel engine was developed based on a 500Ps vehicle diesel engine. Many main parts, such as the intercooler, radiator, and engine controller were designed for the marine diesel engine. The intercooler was designed to be of sea water cooling type; inlet air is cooled by sea water. Engine coolant is cooled by sea water in the radiator too. The water cooling heat exchanger has high cooling performance. In the cooling system, consists of the intercooler and the radiator, the sea water passes through the intercooler and then the radiator, in sequence. This process is very effective compared to the reverse method in which sea water passes through the radiator and then the intercooler, in sequence. The control performance of the engine controller and the fuel injection rate were improved using an engine speed controller. This system was tested on an engine dynamometer and an exhaust gas analyzer using the marine diesel engine test method. Test results show that the 500Ps marine diesel engine satisfied the IMO NOx regulations; Tier II.

A Development of an 3.4L-class Diesel-LNG Dual Fuel Engine for Farming Machine (3.4L 급 농기계용 디젤-천연가스 혼소 엔진 개발)

  • Sim, Juhyen;Ko, Chunsik;Lee, Sangmin;Lee, Okjae;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.187-190
    • /
    • 2012
  • An experimental study was performed to provide the effect of PM reduction and the improvement of diesel alternative ratio utilizing diesel-natural gas dual-fuel combustion mode in a retrofit 3.4-liter diesel engine. In order to achieve the same power as the original diesel engine, engine control unit (ECU) of the dual-fuel engine was calibrated. As a result, diesel alternative ratio was found that the maximum value of diesel alternative ratio was about 96%. Finally PM emission experiment was performed in C1-8 mode cycle and it was shown PM emission was extremely reduced down to $7.42{\ast}10^{-7}g/kWh$ comparing with mechanical diesel engine.

  • PDF

Power and Emission Characteristics of DI Diesel Engine with a Soybean Bio-diesel Fuel (바이오디젤유를 사용한 직접분사식 디젤엔진의 출력성능 및 배출가스 특성)

  • Choi, B.C.;Lee, C.H.;Park, H.J.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.11-16
    • /
    • 2002
  • This paper describes the power performance and emission characteristics of the high speed direct injection diesel engine (2.9 litter displacements) driven by soybean oil asknown a bio diesel fuel. The results were compared to diesel fuel with blending bio diesel fuels. The soybean bio diesel fuel was added in the diesel fuel in concentration varying from 25% to 75% volume rates. We measured the emissions according to ECE 13 mode and full load, fixedengine speed. When the 25% bio diesel fuel was used, NOx emission at the ECE 13 mode test slightly decreased compared with diesel base engine. Over engine speed of 2000 rpm, the level of unburned hydrocarbon(HC) and carbon monoxide(CO) were the same to the diesel engine. Smoke emission decreased asthe blending bio diesel fuel rate increased.

  • PDF