Homogeneous charge compression ignition (HCCI) engines have the potential to provide both diesel-like efficiency and very low emissions of nitrogen oxide (NOx) and particulate matter(PM). However, several technical issues still must be resolved before HCCI can see application. Among these, steep pressure-rise rate which leads to narrow operating range of HCCI engine continues to be a major issue. This work investigates the combination of two methods to mitigate the excessive pressure-rise rates at high power output, namely fuel stratification and Cooled exhaust-gas recirculation (Cooled EGR), after identifying the each effects to pressure-rise rate. When applying the fuel stratification to simulation, total fuelling width of 0.15 at BDC is set as a equivalent ratio difference based on the previous research. In order to simulate the effects of cooled EGR, $CO_2$ mole fraction in pre-mixture is changed ranging from 0 to 30%. DME which has a characteristic of two-stage ignition is used as a fuel.
Ha, Hyeongsoo;Ahn, Juengkyu;Park, Chansu;Kang, Jeongho
Transactions of the Korean Society of Automotive Engineers
/
v.22
no.7
/
pp.84-89
/
2014
Not only the emission regulation of on-road vehicle engine, but also emission regulation of off-road engine have been reinforced. It is the reason of wide application of emission reduction technology for off-road engines. In this study, optimization of engine parameters (Injector hole number, Injection timing and EGR rate) for reduction of NOx and smoke emissions were conducted by using the analysis of sensitivity and S/N ratio of Taguchi method(DOE). As results, this paper shows optimum value of the parameters for NOx and smoke emission reduction. From the result of reproducibility verification, it is final that the prediction value of NOx and smoke has the error of below 10%. Consequently, the method and results of this study will be used for quantitative reference to EGR control mapping in next study.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.18
no.8
/
pp.74-81
/
2019
Cars are inspected in the transport sector for their ability to achieve the greenhouse gas reduction targets. A vehicle (automobile) inspection broadly consists of regular and total checks, and both the safety level and the amount of exhaust gas are checked simultaneously during a vehicle inspection. This study deals with the efficiency of a soot probe to measure soot emissions from diesel vehicles. When the vehicle exhaust gas measurement is performed, there may be a difference between the exhaust gas temperature and the soot suction amount because of the different shape and angle of the exhaust port for each vehicle type. This may result in some incidents where the correct inspection nonconforming vehicle is not selected. Therefore, in this study, the shape of the probe was improved to increase the soot measurement efficiency under the condition of the exhaust pipe angle change.
Journal of the Korean Applied Science and Technology
/
v.35
no.3
/
pp.667-675
/
2018
Increasing emissions regulations and demand of high-efficiency cars that travels a lot of distance with less fuel, there is growing interest in Energy Consumption Efficiency. Korean energy consumption efficiency compute combined Fuel Economy by driven city & highway driving mode and present final Energy Consumption Efficiency as using 5-cycle correction formula. Energy consumption efficiency is computed Carbon-balance-method, when used burning fuel play a key role in vehicle performance & Energy Consumption Efficiency. In Korea, vehicle fuel is circulate by Petroleum and Petroleum Alternative Business Act, there is property difference in quality standard because petroleum sector's refine method or type of crude oil. It does not appear a big difference according to fuel, because it sets steady quality standard, it may affect the performance of automobile. Thus, in research We purchase a few diesel fuel which circulated in the market in summer season though directly-managed-gas station by petroleum sector, resolve property each of fuel, we compute Fuel Economy each of them. We analyze into change depend on applying for property as nowadays utilizing Energy Consumption Efficiency calculating formula of gasoline and diesel fuel. As result, Density each of sample fuel has a maximum difference roughly 0.9%, net heat value each of sample fuel has difference 1.6%, result of current Energy Consumption Efficiency each of sample fuel has a difference roughly 1% at city drive mode, 1.4% at highway drive mode. Result of use gasoline calculator formula shows less 6% result than nowadays utilizing Energy Consumption Efficiency calculating formula, each of sample's Energy Consumption Efficiency shows maximum roughly 1.4% result in city & highway drive mode.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.1
/
pp.345-350
/
2017
Downsizing is widely applied to diesel engines in order to improve fuel efficiency and reduce exhaust emissions. Engine sizes are becoming smaller but pressure and temperature inside combustion chambers are increasing. Therefore, research for fuel spray under high pressure and temperature conditions is important. A constant volume chamber which simulates high temperature and pressure likely to be found in diesel engines was developed in this study. Pressure and temperature were increased abruptly because of ignition of the pre-mixture in the constant volume chamber. Then pressure and temperature were gradually decreased due to the heat loss through the chamber wall. Fuel spray occurred when temperature and pressure were reached at the target condition. In this experiment, the temperature condition should be exactly defined to understand the relation between fuel evaporation and ambient temperature. A fast response thermocouple was developed and used to measure the temporal and spatial temperature distribution during the combustion process inside the combustion chamber. In the results, the core temperature was slightly higher than the bulk temperature calculated by the gas equation. Ed-note: do you want to say 'ideal gas equation'? This was attributed to the heat transfer loss through the chamber wall. The vertical temperature deviation was higher than the horizontal temperature deviation by 5% which resulted from the buoyancy effect.
Kim, Yong-Tae;Lee, Ho-Kil;Kang, Jeong-Ho;Han, Sung-Bin;Chung, Yon-Jong
Journal of Energy Engineering
/
v.17
no.4
/
pp.227-232
/
2008
Carbon dioxide is considered a major greenhouse gas that contributes to global wanning. $CO_2$ is a major component of the exhaust in the combustion of any hydrocarbon fuel. The regulation for $CO_2$ emission from vehicles has become much more stringent in recent years. These more stringent regulations require vehicle manufacturers to develop alternative fuels that reduce exhaust emissions. This paper evaluated the correlation of $CO_2$ emission and fuel economy in the Gasoline, Diesel, and LPG vehicles according to FTP-75 and NEDC(ECE15+EUDC) driving mode. From this study, we discovered that the decrease rate of $CO_2$ emission is higher for fuels of lower carbon concentration. When the relationship between $CO_2$ emission and fuel consumption rate according to used fuels is expressed as a function, one can find out that they have a high correlation. LPG vehicles produce less $CO_2$ emission than gasoline and diesel vehicles.
Journal of the Korean Applied Science and Technology
/
v.33
no.4
/
pp.836-847
/
2016
Water soluble oil was obtained by pyrolysis of biomass. The characteristics of emulsified fuel by mixing water soluble oil and MDO(marine diesel oil) and engine emissions were studied with engine dynamometer. Saw dust was used as biomass. Water soluble oil was obtained by condensing of water and carbon content with pyrolysis of saw dust at $500^{\circ}C$. Emulsion fuel was obtained by emulsifying MDO and water soluble oil by the water soluble oil mixing ratio of 10 to 20% of MDO. Exhaust gas detection was performed with engine dynamometer. While combustion, micro-explosion took place in the combustion chamber by water in the emulsion fuel, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water soluble oil content in the emulsion fuel. The power also decreased according to the increment of water soluble oil content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 20% bio oil content, it was achieved 25% reduction in NOx production, 60% reduction in smoke density, and 15% reduction in power loss.
Journal of the Korean Applied Science and Technology
/
v.35
no.4
/
pp.1421-1432
/
2018
Water soluble oil was obtained from the pyrolysis of coconut waste as a biomass at $600^{\circ}C$. It was studied that the combustion characteristics of bio-emulsion fuel by mixing and emulsifying 15~20% of water soluble oil which obtained from pyrolysis of coconut waste as a biomass and MDO(marine diesel oil) as a marine fuel. Engine dynamometer was used for detecting emissions, temperature, and power. The temperature of combustion chamber was decreased because the moisture in bio-emulsion fuel deprived of heat of evaporation in combustion chamber. While combustion, micro-explosion took place in the combustion chamber by water in the bio-emulsion fuel, MDO fuel scattered to micro particles and it caused to smoke reduction. The temperature reduction of combustion chamber by using bio-emulsion fuel reduced the NOx emission. The increasing of bio-oil content caused increasing water content in bio-emulsion fuel so total calorific value was reduced. So the characteristics of power was decreased in proportion to using the increasing amount of bio-emulsion fuel. Heavy oil as a marine fuel exhausts a lot of smoke and NOx. We expect that we can reduce the exhaust gas of marine engine such as smoke and NOx by using of bio-emulsion fuel as a marine fuel.
While extensive research is being conducted to reduce greenhouse gases in industrial fields, the International Maritime Organization (IMO) has implemented regulations to actively reduce CO2 emissions from ships, such as energy efficiency design index (EEDI), energy efficiency existing ship index (EEXI), energy efficiency operational indicator (EEOI), and carbon intensity indicator (CII). These regulations play an important role for the design and operation of ships. However, the calculation of the index and indicator might be complex depending on the types and size of the ship. Here, to calculate the EEDI of two target vessels, first, the ships were set as Deadweight (DWT) 50K container and 300K very large crude-oil carrier (VLCC) considering the type and size of those ships along with the engine types and power. Equations and parameters from the marine pollution treaty (MARPOL) Annex VI, IMO marine environment protection committee (MEPC) resolution were used to estimate the EEDI and their changes. Technical measures were subsequently applied to satisfy the IMO regulations, such as reducing speed, energy saving devices (ESD), and onboard CO2 capture system. Process simulation model using Aspen Plus v10 was developed for the onboard CO2 capture system. The obtained results suggested that the fuel change from Marine diesel oil (MDO) to liquefied natural gas (LNG) was the most effective way to reduce EEDI, considering the limited supply of the alternative clean fuels. Decreasing ship speed was the next effective option to meet the regulation until Phase 4. In case of container, the attained EEDI while converting fuel from Diesel oil (DO) to LNG was reduced by 27.35%. With speed reduction, the EEDI was improved by 21.76% of the EEDI based on DO. Pertaining to VLCC, 27.31% and 22.10% improvements were observed, which were comparable to those for the container. However, for both vessels, additional measure is required to meet Phase 5, demanding the reduction of 70%. Therefore, onboard CO2 capture system was designed for both KCS (Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship) and KVLCC2 (KRISO VLCC) to meet the Phase 5 standard in the process simulation. The absorber column was designed with a diameter of 1.2-3.5 m and height of 11.3 m. The stripper column was 0.6-1.5 m in diameter and 8.8-9.6 m in height. The obtained results suggested that a combination of ESD, speed reduction, and fuel change was effective for reducing the EEDI; and onboard CO2 capture system may be required for Phase 5.
The SOx emission from the ship diesel engines will do a negative influence to the human health and the environment. To reduce the negative environmental effect of the SOx emission caused by the high traffic of ship movements, the SECA (SOx emission control area) has been set on several province around world to carry out the severe emissions control and to meet the emissions control standard. To cut down the SOx emission from the ships, the wet type scrubber is being used widely. In this work, we prepared a numerical model to simulate the spray type scrubber to study the motion of liquid droplets in the flow of the scrubber. For the analysis, the CFD (computational fluid dynamics) method was adopted. As a special topic of the study, we designed the wave plate type of mist eliminator to check the carry over of the uncontrolled water droplet to the exhaust. Numerical analysis is divided into two stages. At the first stage, the analysis was done on the basic scrubber without the mist eliminator, and then the second stage of analysis was done on the scrubber with the mist eliminator on several condition to check and compare with the basic scrubber. On the condition of the basic scrubber, 42.0% of the distributed water droplets were carried over to the exhaust. But by adding the designed droplet eliminator at the exhaust of the scrubber, only 3.4% of the distributed water droplets supplied to the scrubber was emitted to the atmosphere.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.