• Title/Summary/Keyword: Diesel consumption

Search Result 460, Processing Time 0.026 seconds

Development of intelligent model to predict the characteristics of biodiesel operated CI engine with hydrogen injection

  • Karrthik, R.S.;Baskaran, S.;Raghunath, M.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.367-379
    • /
    • 2019
  • Multiple Inputs and Multiple Outputs (MIMO) Fuzzy logic model is developed to predict the engine performance and emission characteristics of pongamia pinnata biodiesel with hydrogen injection. Engine performance and emission characteristics such as brake thermal efficiency (BTE), brake specific energy consumption (BSEC), hydrocarbon (HC), carbon monoxide (CO), carbon dioxide ($CO_2$) and nitrous oxides ($NO_X$) were considered. Experimental investigations were carried out by using four stroke single cylinder constant speed compression ignition engine with the rated power of 5.2 kW at variable load conditions. The performance and emission characteristics are measured using an Exhaust gas analyzer, smoke meter, piezoelectric pressure transducer and crank angle encoder for different fuel blends (Diesel, B10, B20 and B30) and engine load conditions. Fuzzy logic model uses triangular and trapezoidal membership function because of its higher predictive accuracy to predict the engine performance and emission characteristics. Computational results clearly demonstrate that, the proposed fuzzy model has produced fewer deviations and has exhibited higher predictive accuracy with acceptable determination correlation coefficients of 0.99136 to 1 with experimental values. The developed fuzzy logic model has produced good correlation between the fuzzy predicted and experimental values. So it is found to be useful for predicting the engine performance and emission characteristics with limited number of available data.

Corrosion Characteristics of St37.4 Carbon Steel for Ship Fuel Pipe with Ammonia Concentration (선박 연료배관용 St37.4 탄소강의 암모니아 농도에 따른 부식 특성)

  • Do-Bin, Lee;Seung-Jun, Lee
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.514-524
    • /
    • 2022
  • Carbon emissions from fuel consumption have been pointed by scientists as the cause of global warming. In particular, fossil fuels are known to emit more carbon when burned than other types of fuels. In this regard, International Maritime Organization has announced a regulation plan to reduce carbon dioxide emissions. Therefore, recently, Liquefied Natural Gas propulsion ships are responding to such carbon reduction regulation. However, from a long-term perspective, it is necessary to use carbon-free fuels such as hydrogen and ammonia. Nitrogen oxides might be generated during ammonia combustion. There is a possibility that incompletely burned ammonia is discharged. Therefore, rather than being used as a direct fuel, Ammonia is only used to reduce NOX such as urea solution in diesel vehicle Selective Catalyst Reduction. Currently, LPG vehicle fuel feed system studies have evaluated the durability of combustion injectors and fuel tanks in ammonia environment. However, few studies have been conducted to apply ammonia as a ship fuel. Therefore, this study aims to evaluate corrosion damage that might occur when ammonia is used as a propulsion fuel on ships.

Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation (해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석)

  • Jong-Hyeok RYU;Hyeon-Suk JEONG;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.

A Study on the Calculation of GHG Emission for Domestic Railroad Transport based on IPCC Guideline (IPCC 가이드라인을 이용한 국내 철도수송에 따른 온실가스 배출량 산정에 관한 연구)

  • Lee, Jae-Young;Kim, Yong-Ki;Lee, Cheul-Kyu;Rhee, Young-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.408-412
    • /
    • 2012
  • Recently, new climate change mechanism after 2020 year has been accepted with the parties, and so government is pushing ahead the GHG reduction policies to achieve the effective results. Especially, it is essential to enhance the role of railroad in the public traffic system as well as to develop new cars with high energy efficiency for the GHG reduction of transportation sector. Thus, the calculation method of GHG emission of railroad should be established to manage the emission continuously. In this study, the calculation method of GHG emission of railroad was defined with Tier level considering its emission sources to refer to 2006 IPCC guideline for national GHG inventories. Also, the GHG emission of railroad at Tier 1 level was investigated using the activity data related to the amount of diesel and electricity consumption from 2008 to 2010. As a result, total GHG emission in 2010 was about 2,060 thousands ton CO2e, which have 73% of electricity and 27% of diesel. In future, the plans on the GHG reduction of railroad will be accomplished by the analysis of the detailed trends on the basis of the emission management of Tier 3 level under operating patterns. Therefore, it is important to develop the specific GHG emission factors of railroad in advance.

A study on performance comparison of jacket cooling fresh water system for marine diesel engine (선박용 디젤기관의 재킷 냉각청수시스템 성능 비교에 관한 연구)

  • Kim, Duk-Kyung;Lee, Jae-Hyun;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • Due to the financial crisis in 2008, the world economy collapsed leading to an increase in oil prices and a decrease in freight by shipping. To overcome this crisis, major shipping companies ordered larger ships, changed their trading route and improved operating of ships to overcome deficits. In particular, low-speed navigation was much favored by many companies so that it can reduce fuel consumption. However, the long-term operation of high-speed optimized engines in low-speeds has affected the jacket cooling fresh water (J.C.F.W.) system as they fail to maintain the normal operational temperature. The temperature of J.C.F.W. system dropped leading to low temperature corrosion. As a result, when the engine is operating at minimal load the functioning of existing J.C.F.W cooler is decreased and the use of fresh water generator is substantially limited. Therefore, an improvement in the functioning of J.C.F.W. system is necessary. In this paper, in order to review the improvements required for the operation of J.C.F.W. of low-speed operating marine diesel, an experiment was conducted by comparing and analyzing the results of the main engine J.C.F.W. system of a Panamax class bulk carrier 82k and a Cape class bulk carrier 180k by installing and uninstalling the J.C.F.W. Cooler. Thus, this paper proposed an improved design of the J.C.F.W. system that is suitable for the present low-speed operation.

Energy efficiency improvements in part load for a marine auxiliary diesel engine (선박발전기용 디젤엔진의 부분부하에서 에너지 효율 개선에 관한연구)

  • Jung, Kyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.877-882
    • /
    • 2014
  • The reduction of CO2 emission has been discussed in the Marine Environment Protection committee in the International Maritime Organization as the biggest causes of GHG for the purpose of indexing CO2 amounts released into the atmosphere from ships. Accordingly, various methods including the change in the hull design to improve energy efficiency, the coating development to reduce friction resistances, the additives development for improving thermal efficiency in an engine, the low-speed operation to reduce fuel consumptions, and etc. have been applied. The main engine of a ship is an electronic engine for improving the efficiency of the whole load area. However, marine generator engines still use mechanical drive engines in intake, exhaust, and fuel injection valve drive cams. In addition, most of marine generator engines in ships apply a part-load operation of less then 80% due to an overload protection system. Therefore, marine auxiliary diesel engine set at 100% load is necessary to readjust in order to efficient operation because of part-load operation. The objective of this study is to report the results of the part-load fuel consumption improvement by injection timing readjust to identifying the operational characteristics of a marine generator engine currently operated in a ship.

A study on an instantaneous angular velocity and torque fluctuation for marine diesel engine (선박용 디젤 기관의 순간 각속도와 토크 변동에 관한 연구)

  • Jung, Gyun-sik;Lee, Ji-woong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.722-728
    • /
    • 2015
  • The demand for shipboard energy management is expected to gradually increase based on ship energy efficiency management plans (SEEMPs), which have been in use since January 1, 2013. Therefore, the fuel consumption of the main engine, which occupies the greatest portion of the energy used, along with elements related to the engine power, should be strictly monitored. There are many different methods for indicating the engine power. However, this study performed an experiment to monitor the status of a ship's engine power in real time using an encoder and a proximate switch, which are economical to purchase and easy to install. In the experiment, the angular velocity during one cycle of a two-stroke low-speed engine was measured, and the measured data were converted to the torque fluctuation. The angular velocity during an abnormal firing condition in the cylinder was also measured, and the torque fluctuation as a result of a misfire was considered. The results were compared with sea trial data to determine the reliability. In this study, the status of the engine power was determined using the torque fluctuation of the main engine in an operating ship.

Development of a Novel Process to produce Biodiesel and its use as fuel in CI Engine performance study

  • Mishra, Prasheet;Lakshmi, D.V.N.;Sahu, D.K.;Das, Ratnakar
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.154-161
    • /
    • 2015
  • A novel process has successfully been developed by overcoming major difficulties through the elimination of number of process steps involved in the Classical Transesterification reaction during the preparation of Fatty Acid Methyl/Ethyl Ester (FAME.FAEE) called biodiesel. The Classical process with cost intensive process steps such as the utilization of excess alcohol, needing downstream distillation for the recovery and reutilization of excess alcohol/cosolvent, unrecoverable homogenous catalyst which consumes vast quantity of fresh distilled water during the purification of the product and downstream waste water treatment before its safe disposal to the surface water body. The Novel Process FAME/FAEE is produced from any vegetable oil irrespective of edible or inedible variety using sonication energy. The novelty of the finding is the use of only theoretical quantity of alcohol along with a co-solvent and reduced quantity of homogeneous catalyst. Under this condition neither the homogeneous catalyst goes to the FAME layer nor is the distillation needed. The same ester also has been prepared in high pressure high temperature reactor without using catalyst at sub critical temperature. The quality of prepared biodiesel without involving any purification step meets the ASTM standards. Blended Biodiesel with Common Diesel Fuel (CDF) and FAME is prepared, characterized and used as fuel in the Kirloskar make CI Engines. The evaluation of the engine performance result of pure CDF, B05 biodiesel, B10 biodiesel of all types of biodiesel prepared by using the feedstock of Soybean (Glycine max) and Karanja (Pongamia pinnate) oil along with their mixed oil provides useful information such as brake power, brake thermal efficiency, brake specific fuel consumption, etc, and established it as ideal fuel for unmodified CI engine.

A Study on the Response Characteristics of a High Speed Solenoid (고속 솔레노이드의 응답특성에 관한 연구)

  • Cho, Kyu-Hak
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.142-151
    • /
    • 2000
  • The studies on the electronic control fuel injection system for a DI diesel engine have done for reducing the exhaust emission and improving fuel consumption. The electronic control fuel injection system is classified into a common rail system, a unit injector system and a high pressure injection system. The characteristics of these systems are largely depends on the operating characteristics of its solenoid that have high speed on-off operation. In order to improve these characteristics of fuel injection system, it is necessary to design the optimal shape of solenoid and select the input method of its power source. It was proposed HELENOID, COLENOID, DISOLE, and Multipole Solenoid in the studies of design for the optimal shape of solenoid. The studies on the energizing method, input method for power of solenoid were dealt with the conventional energizing method, the chopping method and the pre-energizing method. In order to find out the high response characteristics of solenoid, it is necessary to test the performance of optimally designed solenoid with a new energizing method. In this paper, the solenoid of multi-pole type with plat armature and its power control unit to control input current by the chopping method designed, and its response tests were performed according to its energizing conditions. As a result, the maximum input current for solenoid was controlled by the period of first stage exciting current and chopping duty ratio of control stage exciting current, and the fastest "on" time was able to get 0.46ms. The conditions of fastest "on" time was 0.3ms for first stage exciting current, 0.16ms for control exciting current and 75% for chopping duty ratio.

  • PDF

A Study on the Environment Assessment of Waste Polyethylene Terephthalate (PET) by LCA (LCA기법을 이용한 PET의 환경성평가에 관한 연구)

  • Park, Chan-Hyuk;Chung, Jae-Chun;Choi, Suk-Soon;Kim, Sung-Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.115-123
    • /
    • 2005
  • In this study, life cycle assessment(LCA) technique was employed to evaluate the environmental impact of material recycling of polyethylene terephthalate(PET) bottle. Life cycle inventory was established based on the data collected from recycling companies in Korea. Simapro 5.0 LCA software and Eco-indicator 95 index were used for the analysis. The biggest impact by the material recycling of PET bottle on the environmental category was the global warming. It is because melting and production of the recycled PET product consume a significant amount of electricity and energy. In the environmental pollution discharge, $CO_2$ emission was the highest, followed by NOx. This is probably due to the use of diesel and gasoline in the consumption of electricity and transportation. All the environmental impact showed (-) value except the ozone layer depletion, which means that the material recycling of PET bottle is environmentally fair. The use of recycled PET product greatly reduced the environmental impact.

  • PDF