• Title/Summary/Keyword: Diesel consumption

Search Result 460, Processing Time 0.024 seconds

Basic Experimental Study on the Application of Biofuel to a Diesel Engine (바이오연료의 엔진 적용을 위한 실험적 기초연구)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1163-1168
    • /
    • 2011
  • Compared with the spark-ignition gasoline engine, the compression-ignition diesel engine has reduced fuel consumption due to its higher thermal efficiency. In addition, this reduction in the fuel consumption also leads to a reduction in $CO_2$ emission. Diesel engines do not require spark-ignition systems, which makes them less technically complex. Thus, diesel engines are very suitable target engines for using biofuels with high cetane numbers. In this study, the spray characteristics of biofuels such as vegetable jatropha oil and soybean oil were analyzed and compared with those of diesel oil. The injection pressures and blend ratios of jatropha oil and diesel oil (BD3, BD5, and BD20) were used as the main parameters. The injection pressures were set to 500, 1000, 1500, and 1600 bar. The injection duration was set to $500{\mu}s$. Consequently, it was found that there is no significant difference in the characteristics of the spray behavior (spray angle) in response to changes in the blend ratio of the biodiesel or changes in the injection pressure. However, at higher injection pressures, the spray angle decreased slightly.

The Characteristics of Biodiesel Fuel as an Alternative Fuel of an Agricultural Diesel Engine (농업용 디젤기관의 대체연료로서 바이오디젤유의 특성)

  • Choi S. H.;Oh Y.T.;Lee C.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.115-120
    • /
    • 2006
  • Our environment is faced with serious problems related to the air pollution from diesel engines in these days. In particular, the exhaust emissions of agricultural diesel engines are recognized main cause which influenced environment strongly. In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated agricultural D.I. diesel engine. The smoke emission of biodiesel fuel was reduced remarkably in comparison with diesel fuel, that is, it was reduced approximately 50% at 2500 rpm, full load. But, power, torque and brake specific energy consumption didn't have large differences. But, NOx emission of biodiesel fuel was increased compared with commercial diesel fuel. Also, the effects of exhaust gas recirculation (EGR) on the characteristics of NOx emission has been investigated. It was found that simultaneous reduction of smoke and NOx was achieved with biodiesel fuel (20vol-%) and cooled EGR method($5{\sim}15%$) in an agricultural D.I. diesel engine.

Performance and emission characteristics of biodiesel blends in a premixed compression ignition engine with exhaust gas recirculation

  • Kathirvelu, Bhaskar;Subramanian, Sendilvelan
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.294-301
    • /
    • 2017
  • This paper is based on experiments conducted on a stationary, four stroke, naturally aspirated air cooled, single cylinder compression ignition engine coupled with an electrical swinging field dynamometer. Instead of 100% diesel, 20% Jatropha oil methyl ester with 80% diesel blend was injected directly in engine beside 25% pre-mixed charge of diesel in mixing chamber and with 20% exhaust gas recirculation. The performance and emission characteristics are compared with conventional 100% diesel injection in main chamber. The blend with diesel premixed charge with and without exhaust gas recirculation yields in reduction of oxides of nitrogen and particulate matter. Adverse effects are reduction of brake thermal efficiency, increase of unburnt hydrocarbons (UBHC), carbon monoxide (CO) and specific energy consumption. UBHC and CO emissions are higher with Diesel Premixed Combustion Ignition (DPMCI) mode compared to compression ignition direct injection (CIDI) mode. Percentage increases in UBHC and CO emissions are 27% and 23.86%, respectively compared to CIDI mode. Oxides of nitrogen ($NO_x$) and soot emissions are lower and the percentage decrease with DPMCI mode are 32% and 33.73%, respectively compared to CIDI mode.

COMBUSTION AND EMISSION CHARACTERISTICS OF A TURBOCHARGED DIESEL ENGINE FUELLED WITH DIMETHYL ETHER

  • Wu, J.;Huang, Z.;Qiao, X.;Lu, J.;Zhang, L.;Zhang, J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.645-652
    • /
    • 2006
  • This paper is concerned with an experimental study of a turbocharged diesel engine operating on dimethyl ether(DME). The combustion and emission characteristics of DME engine were investigated. The results showed that the maximum torque and power with DME could achieve a greater level compared to diesel operation, particularly at low speeds; the brake specific fuel consumption with DME was lower than the diesel at low and middle engine speeds. The injection delay of DME was longer than that of diesel. However, the maximum cylinder pressure, maximum pressure rise rate and combustion noises of DME engine were lower than those of diesel. The combustion velocity of DME was faster than that of diesel, resulting in a shorter combustion duration of DME. Compared with the diesel engine, $NO_x$ emissions of the DME engine were reduced by 41.6% on ESC data. The DME engine was smoke free at all operating points of the engine.

A Comparative Study on Diesel Engine Performance with Higher Alcohol-diesel Blends (고탄소알코올/경유 혼합유를 이용한 디젤엔진 성능 특성 비교 )

  • JAESUNG KWON;JEONGHYEON YANG;BEOMSOO KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.767-772
    • /
    • 2023
  • In this study, combustion experiments were conducted at various engine speeds under full-load conditions using a single-cylinder diesel engine by blending butanol, pentanol, and octanol with diesel at a volume ratio of 10%. Experimental results revealed that higher alcohol-diesel blends resulted in lower brake torque and brake power than pure diesel due to the lower calorific value and the cooling effect during evaporation. An evident improvement in the brake thermal efficiency of the blended fuels was observed at engine speeds below 2,000 rpm, with the butanol blend exhibiting the highest thermal efficiency overall. Furthermore, the brake-specific fuel consumption of the higher alcohol-diesel blends was lower than that of pure diesel at speeds below 2,200 rpm. When using blended fuels, the exhaust gas temperature decreased under lean mixture conditions due to heat loss to the air and the cooling effect from fuel evaporation.

The Characteristics on the Engine Performance for Variation of Fuel Injection Timing in DI Diesel Engine Using Biodiesel Fuel (직접분사식 디젤기관에서 바이오디젤 사용과 연료분사시기 변화에 따른 기관성능 특성)

  • Jang, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • Biodiesel is technically competitive with or offers technical advantages over conventional petroleum diesel fuel. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. In this study, to investigate the effect of fuel injection timing on the characteristics of performance with DBF in DI diesel engine. The engine was operated at five different fuel injection timings from BTDC $6^{\circ}$ to $14^{\circ}$ at $2^{\circ}$ intervals and four loads at engine speed of 1800rpm. As a result of experiments in a test engine, maximum cylinder pressure is increased with leading fuel injection timing. Specific fuel oil consumption is indicated the least value at BTDC $14^{\circ}$ of fuel injection timing.

A Basic Study on the Development of GHG Emission Factor from Diesel-Powered Railcars in Korea (국내 디젤철도차량의 온실가스 배출계수 개발방향 연구)

  • Lee, Jae-Young;Kim, Yong-Ki;Lee, Cheul-Gyu;Rhee, Young-Ho;Lee, Cheol
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2258-2261
    • /
    • 2010
  • Since national mid-term target for GHG reduction was determined in 2009, various efforts in transportations have been prepared. Generally, the GHG emission of transportation is calculated using the emission factor published from IPCC guideline(2006). However, it is necessary to develop new emission factors considering the properties of transportation as well as fuel. In Korean railroad, main emission sources are the consumption of diesel and electricity from railcar operation. The GHG emission of electric-powered railcars can be estimated using national electric emission factor, but diesel-powered railcars show different trends. The purpose of this study was to establish the development plans of emission factors for diesel-powered railcars. As a result, the emission factors of diesel-powered railcars were classified into railcar type, engine type and life cycle, notch, load, and traffic volume. In future, several emission factors with this category will be presented quantitatively through field tests with the order of priority.

  • PDF

Application of Biodiesel Fuel and EGR Method in an IDI Diesel Engine (간접분사식 디젤기관에서 바이오디젤유 및 EGR 방법 적용)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.62-67
    • /
    • 2009
  • In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated indirect injection diesel engine. The smoke emission of biodiesel fuel was reduced remarkably in comparison with diesel fuel, that is, it was reduced approximately 36% at 2000rpm, full load condition. And, power, torque and brake specific energy consumption showed no significant differences. However, NOx emission of biodiesel fuel was increased compared with commercial diesel fuel. Also, the effects of exhaust gas recirculation(EGR) to reduce the NOx emission has been investigated. It was found that simultaneous reduction of smoke and NOx was achieved with biodiesel fuel(20vol-%) and cooled EGR method$(10{\sim}15%)$.

A Study on the Feasibility Test & the Performance Experiment of Small Type Diesel Engine using the an Rice-bran oil (미강유적용 소형 디젤기관의 타당성 검증 및 성능실험에 관한 연구)

  • Yu, B.G.;Cha, K.O.;La, W.J.;Chung, J.D.
    • Journal of ILASS-Korea
    • /
    • v.2 no.3
    • /
    • pp.44-50
    • /
    • 1997
  • Bio-diesel oil is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. Recently the use of bio-oils in disel engines has received considerable attention to the forseeable depletion of world oil supplies. So, Bio-diesel oil has been attracted with attentions as an alternative and clean energy source. The objective of this paper is to experimentally investigate the characteristic of performance using light oil, rice-bran oil, heated rice-bran oil, rice-bran oil treated with ultrasonic energy. We included rice-bran oil and applied ultrasonic energy to highly viscous bio-oils. These methods seems to have never been tried yet. The final data may be able to be applicated for the design of the diesel engine using an alternative fuel.

  • PDF

Experimental study on the performance of a turbocompound diesel engine with variable geometry turbocharger

  • Yin, Yong;Liu, Zhengbai;Zhuge, Weilin;Zhao, Rongchao;Zhao, Yanting;Chen, Zhen;Mi, Jiao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.332-337
    • /
    • 2016
  • Turbocompounding is a key technology to satisfy the future requirements of diesel engine's fuel economy and emission reduction. A turbocompound diesel engine was developed based on a conventional 11-Liter heavy-duty diesel engine. The turbocompound system includes a power turbine, which is installed downstream of a Variable Geometry Turbocharger (VGT) turbine. The impacts of the VGT rack position on the turbocompound engine performance were studied. An optimal VGT control strategy was determined. Experimental results show that the turbocompound engine using the optimal VGT control strategy achieves better performance than the original engine under all full load operation conditions. The averaged and maximum reductions of the brake specific fuel consumption (BSFC) are 3% and 8% respectively.