• Title/Summary/Keyword: Diesel Particulate Filters (DPF)

Search Result 20, Processing Time 0.022 seconds

Study on the high efficiency cleaning performance of the diesel vehicle DPF (디젤 자동차용 매연저감장치(DPF)의 클리닝 성능 고도화에 관한 연구)

  • Kim, Hyongjun;Chung, Jaewoo;Kang, Jungho;Lee, Jinwoo;Park, Jungsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Regulations for the exhaust gas of diesel vehicles are being strengthened every year. Recently, diesel emission regulations for HC, CO, NOx, and particulate matter (PM) have been subject to very strict standards. In the future, the regulation of PM is expected to become stricter. Accordingly, diesel particulate filters (DPFs) have been applied to most diesel vehicles for PM reduction. With increasing engine mileage, ash and soot from the engine exhaust gas accumulate inside the DPF. This accumulation can damage the DPF or degrade engine performance. Therefore, efficient cleaning of the DPF is critical for the maintenance of the engine. If the DPF is well managed through regular cleaning, it can improve the power and fuel economy of the engine and reduce maintenance costs. Therefore, this study was performed to develop a high-efficiency cleaning method for DPFs and an apparatus that can more effectively clean out the accumulated ash and soot.

DETAILED EXAMINATION OF INVERSE-ANALYSIS PARAMETERS FOR PARTICLE TRAPPING IN SINGLE CHANNEL DIESEL PARTICULATE FILTER

  • Jung, S.C.;Park, J.S.;Yoon, W.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.165-177
    • /
    • 2007
  • Predictions of diesel particulate filtration are typically made by modeling of a particle collection, and providing particle trapping levels in terms of a pressure drop. In the present study, a series of single channel diesel particulate filter (DPF) experiments are conducted, the pressure traces are inversely analyzed and essential filtration parameters are deducted for model closure. A DPF filtration model is formulated with a non-linear description of soot cake regression. Dependence of soot cake porosity, packing density, permeability, and soot density in filter walls on convective-diffusive particle transportation is examined. Sensitivity analysis was conducted on model parameters, relevant to the mode of transition. Soot cake porosity and soot packing density show low degrees of dispersion with respect to the Peclet number and have asymptotes at 0.97 and $70\;kg/m^3$, respectively, at high Peclet number. Soot density in the filter wall, which is inversely proportional to filter wall Peclet number, controls the filtration mode transition but exerts no influence on termination pressure drop. The percolation constant greatly alters the extent of pressure drop, but is insensitive to volumetric flow rate or temperature of exhaust gas at fixed operation mode.

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.

Filtration Characteristics of Metal Foam Filters for DPF Combined with Electrostatic Precipitation Mechanism (전기집진 기제를 조합시킨 DPF용 금속 폼 필터의 여과 특성)

  • Park, Seok-Joo;Lee, Dong-Geun;Kim, Jin-Hyun;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.151-158
    • /
    • 2007
  • Filtration studies, using simulated test nanoparticles or diesel nanoparticles, have been performed about Inconel foam filters for DPF combined with electrostatic precipitation. The simulated test particles were synthesized by laser ablation in the nitrogen atmosphere at the standard condition. The diesel particles were exhausted from the diesel engine driven on the condition of idle or load mode. Filtration efficiency of the metal foam filter is very low because most of particles are penetrated through the large pores of filter. However, the efficiency was considerably improved by applying the electric field to the filter and/or charging the nanoparticles. Nevertheless, the pressure drop of filter hardly increased because the filter-pores were not clogged by deposited particles and kept open.

A Study on Optimization of Catalyst Injection Controller for Reducing Soot (Soot 저감을 위한 촉매 분사 최적화 방안 연구)

  • Kim Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.278-284
    • /
    • 2006
  • The popularity of the diesel engine revolves around its fuel efficiency, reliability, and durability compared to the gasoline engine. However, the main disadvantage of diesel engine is the emission of particulate matter (PM) which is known as carcinogenic substance. Therefore recent progress in engine management and after-treatment systems has led to great improvement to satisfy strict emission regulations. To comply with powerful environment regulations, this study is focused on the decrease of PM(soot) as to increase significantly exhaust temperature. Therefore, HC injection is used as the method to go to the PM regeneration temperature in front of filters composed of diesel oxidation catalyst(DOC) and diesel particulate filter(DPF). And especially, LPG is used because it has good chemical reactions with exhaust. In this study, we could manufacture the test bench thought LPG injection - with which soot can be decreased-, construct 3 kinds of database(DB) according to quantity of temperature to decide the LPG injection quantity and develop DPF ECU algorithm.

  • PDF

Control Measures for Air Pollutant Emissions from In-Use Light-Duty Diesel Vehicles Regarding their Emission Control Technologies (배출허용기준 대응기술을 고려한 국내 소형 경유 운행차의 대기오염물질 관리 방안)

  • Lee, Taewoo;Park, Hana;Park, Junhong;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.327-338
    • /
    • 2014
  • The objective of this study is to enhance the effectiveness of Korean Inspection and Maintenance (I/M) program. Three main tasks are: to measure pollutant emissions of in-use light-duty diesel vehicles (LDVs); to evaluate the validity of existing smoke control scheme for low-smoke-emitting vehicles, which have diesel particulate filters, DPF, to meet stringent Euro-5 emission limits; and to assess the necessity and the benefit of $NO_x$ inspection, which is not involved in current I/M program. We measured second-by-second smoke, particulate and gaseous emissions of 27 LDVs using opacity smoke meter, photo-acoustic soot sensor, and portable emissions measurement system, respectively, under the Korean I/M test driving cycle, KD-147. We find that the DPF plays a key role in controlling soot, which can be considered as black carbon contained in particulate matter. Thus, from an I/M perspective, we believe smoke inspection strategies for Euro-5 diesel vehicles should be more focused on the capability of detecting DPF malfunctions or failures, in order to keep DPF properly functional. Fleet averaged distance-specific $NO_x$ emissions are consistently higher than corresponding emission limits, and the values are similar among pre-Euro-3, Euro-3, and Euro-4 vehicle fleets. These findings indicate that the $NO_x$ inspection should be incorporated into current I/M program in order to manage urban $NO_x$ emissions. This research allows the Korean I/M program keep pace with developments in vehicle technologies, as well as the increased emphasis on $NO_x$ with respect to air quality and human health.

The Effect of Flow Distribution on Transient Thermal Behaviour of CDPF during Regeneration (배기의 유속분포가 CDPF의 재생 시 비정상적 열적 거동에 미치는 영향)

  • Jeong, Soo-Jin;Lee, Jeom-Joo;Choi, Chang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.10-19
    • /
    • 2009
  • The working of diesel particulate filters(DPF) needs to periodically burn soot that has been accumulated during loading of the DPF. The prediction of the relation between an uniformity of gas velocity and soot regeneration efficiency with simulations helps to make design decisions and to shorten the development process. This work presents a comprehensive combined 'DOC+CDPF' model approach. All relevant behaviors of flow fluid are studied in a 3D model. The obtained flow fields in the front of DPF is used for 1D simulation for the prediction of the thermal behavior and regeneration efficiency of CDPF. Validation of the present simulation are performed for the axial and radial direction temperature profile and shows goods agreement with experimental data. The coupled simulation of 3D and 1D shows their impact on the overall regeneration efficiency. It is found that the flow non-uniformity may cause severe radial temperature gradient, resulting in degrading regeneration efficiency.

Uncontrolled Regeneration Characteristics of SiC DPFs using DPF Test Rig (DPF 테스트 리그를 이용한 SiC DPF의 이상연소 특성)

  • Oh, Kwang-Chul;Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.80-86
    • /
    • 2008
  • Uncontrolled regeneration characteristics of two different type SiC DPFs(diesel particulate filters) were investigated by DPF test rig devised to facilitate DPF evaluation, especially for regeneration and MSL(maximum soot loading) test similar to engine dynamometer test. In order to estimate the limits of maximum filter temperature and temperature gradient causing filter fracture, such as crack or whitening, the temperature distributions inside the filter were measured by thermocouples. The maximum filter temperature was observed near the rear plane of central filter region due to heat accumulation by exothermic reaction of PM but the maximum temperature gradient occurred at the boundary of high filter temperature. These two parameters induced the different SiC DPFs to fracture with different modes, whitening and crack.

Study on Transient Analysis for Flow Characteristics in DPF (DPF의 유동특성에 관한 과도해석 연구)

  • Shin, Dong-Won;Yoon, Cheon-Seog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.131-138
    • /
    • 2010
  • Because real flow of engine exhaust is very hot and highly transient, it may cause thermal and inertial loads on catalyzed filters in DPF. Transient and detailed flow and thermal simulations are necessary in this field. To assess the importance of time dependent phenomena, typical cone-type configuration such as an underbody DPF is selected for steady and transient analysis. User defined functions of FLUENT by sinusoidal inlet velocities are written and integrated with main solver for realistic simulation. Also, 4-cylinder and 6-cylinder engines for 3,000 L class are considered for the dynamic exhaust effect of engine type. Key parameters to understanding of catalyst performance and durability issues such as flow uniformity index and peak velocity are investigated. Also, pressure drop for engine power are considered. From the simulation results for three different cases, proper approach is recommended.

Effect of the Properties of Diesel Engine Oil and Aging on Exhaust Gases and DPF (경유엔진용 윤활유의 성상 및 열화가 배출가스 및 후처리 장치에 미치는 영향 연구)

  • Kim, JeongHwan;Kim, KiHo;Lee, JungMin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.292-299
    • /
    • 2018
  • The objective of this research is to investigate the impact of engine oil aging on PM(Particulate Matter), exhaust gases, and DPF. It is widely known that the specification of a lubricant and its consumption in an ICE considerably influences the release of regulated harmful emissions under normal engine operating conditions. Considering DPF clogging phenomena associated with lubricant-derived soot/ash components, a simulated aging mode is designed for DPF to facilitate engine dynamometer testing. A PM/ash accumulation cycle is developed by considering real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for ash accumulation. The test duration for DPF aging is approximately 300 h with high- and low-SAPs engine oils. Detailed engine lubricant properties of new and aged oils are analyzed to evaluate the effect of engine oil degradation on vehicle mileage. Furthermore, physical and chemical analyses are performed using X-CT, ICP, and TGA/DSC to quantify the engine oil contribution on the PM composition. This is achieved by sampling with various filters using specially designed PM sampling equipment. Using high SAPs engine oil causes more PM/ash accumulation compared with low SAPs engine oils and this could accelerate fouling of the EGR in the engine, which results in an increase in harmful exhaust gas emissions. These test results on engine lubricants under operating conditions will assist in the establishment of regulated and unregulated toxic emissions policies and lubricant quality standards.