• Title/Summary/Keyword: Diesel Engine Mount

Search Result 18, Processing Time 0.026 seconds

A Study on the Decision of the Mount for the Newly Developed Diesel Engine using the Existing Engine Room (기존의 엔진룸을 이용한 신규 개발 디젤 엔진의 지지계 결정에 관한 연구)

  • 김규철;김주연;안상호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.75-85
    • /
    • 1998
  • This paper presents the procedures and technique of the decision on the decision on the mount in a diesel engine development newly. To assess the vibration chara- cteristics of the engine plus transmission, their inertia moments are calculated for three engine versions. i.e., NA(Naturally Aspirated), TC(Turbocharged) and TCI(Turbocharged and Intercooled). These data are used to determine the mount layout and stiffness values affecting the noise quality of an engine as well as a vehicle. The main purpose of this paper is to design the mount rubber having the optimal stiffness characteristics through the investigation of the calculation results and the mount conditions when an engine is installed in a vehicle using the existing engine mount room. Thus, this paper describes the optimal mount positions, rubber stiffnesses, natural frequency, mode shapes and so on using ADAMS program to apply the newly developed engines to three different vehicles.

  • PDF

A Study on Vibration Reduction of Local Structure of Medium-speed Diesel Engine (중속 디젤엔진 국부 구조물의 진동저감 연구)

  • Jung, Kun-Hwa;Lee, Jun-Ho;Son, Jung-Ho;Ryoo, Young-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.257-261
    • /
    • 2011
  • The failures of local structure of marine medium-speed diesel engine occurred in durability test. The vibration response of the whole engine was in an acceptance level, but the local structures were broken. ODS test and vibration measurement were carried out in order to investigate the root cause of durability problem. These tests revealed that the root cause of failures was excessive vibration by $4.5^{th}$ resonance between engine body and local structure. The best solution to reduce the vibration response is to change the type of mount. After a rigid mount was replaced by a flexible mount, maximum vibration level dropped to 72%.

  • PDF

Optimal Design of New MR Mount for Diesel Engine of Ship (선박디젤엔진을 위한 새로운 MR 마운트의 최적설계)

  • Do, Xuan-Phu;Park, Joon-Hee;Woo, Jae-Kwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.93-99
    • /
    • 2012
  • This paper presents an optimal design of magnetorheological (MR) fluid based mount (MR mount in short) which can be applicable to vibration control of diesel engine of ship. In this work, a mixed - mode including squeeze mode, flow mode and shear mode is proposed and designed. In order to determine actuating damping force of MR mount required for efficient vibration control, excitation force from diesel engine is analyzed. In this analysis, a model of V-type engine is considered and the relationship between velocity and pressure of gas in torque of the piston is derived. Subsequently, by integrating the field-dependent rheological properties of commercially available MR fluid with the excitation force an appropriate size of MR mount is designed. In addition, in order to achieve maximum actuating force with geometric constraints design optimization is undertaken using ANSYS software. Through the magnetic density analysis, optimal design parameters such as bottom gap and radius of coil are determined.

  • PDF

Optimal Design of New Magnetorheological Mount for Diesel Engines of Ships (선박용 디젤엔진을 위한 새로운 MR 마운트의 최적설계)

  • Do, Xuan-Phu;Park, Joon-Hee;Woo, Jae-Kwan;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.209-217
    • /
    • 2013
  • This paper presents an optimal design of a magnetorheological(MR) fluid-based mount(MR mount) that can be used for to vibration control in diesel engines of ships. In this work, a mount that uses mixed-modes(squeeze mode, flow mode, and shear mode) is proposed and designed. To determine the actuating damping force of the MR mount required for efficient vibration control, the excitation force from a diesel engine is analyzed. In this analysis, a model of a V-type engine is considered. The relationship between the velocity and pressure of gas in terms of the torque acting on the piston is derived. Subsequently, by integrating the field-dependent rheological properties of commercially available MR fluid with the excitation force, the appropriate size of the MR mount is designed. In addition, to achieve the maximum actuating force under geometric constraints, design optimization is undertaken using the ANSYS parametric design language software. Through magnetic density analysis, optimal design parameters such as the bottom gap and radius of coil are determined.

Vibration characteristics of diesel generator set with resilient mount and prevention of vibration on the design stage (탄성 마운트 장착 디젤 발전기 세트의 진동 특성과 예방에 대한 연구)

  • Lee, Kun-Hee;Bae, Jong-Gug;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.921-924
    • /
    • 2005
  • Diesel generator sets with resilient mounts often experience resonances by major excitations which come from diesel engine and their foundation with rigid body modes. Because their natural frequency is determined by moment of inertia and stiffness of resilient mount vibration problems are resolved by changing location and stiffness of resilient mounts. But the calculated natural frequencies are inaccurate due to uncertainty of the inertia and mount stiffness. So this result can be useless on the design stage. In this paper, the stiffness of mount is evaluated on result from mount stiffness test in laboratory and generator set vibration test and a simple calculation method for moment of inertia is proposed. Based on these data, the procedure to select optimized mount stiffness and location on the design stage is set up.

  • PDF

Acoustic Enclosure Design of Diesel Engine (디젤엔진의 음향차폐장치 설계)

  • Choi, Hyun;Kim, Young-Chan;Kim, Doo-Hoon;Jeon, Jae-jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.481-487
    • /
    • 1997
  • The development of transportation and construction equipment has required higher engine power and lower operation cost. The sound which the engine emits often degrade the performance of the whole system which adopts that engine. Specially the marine engine requires high restriction on the noise level for the customer's comfort and safety. The noise and vibration of Diesel engine must be carefully considered in the early design step. The double antivibration system is effective to increase the efficiency of antivibration, and the acoustic enclosure for reducing the noise level. 2 DOF model was effective to estimate the antivibration performance, which allows to determine the mass of the engine bed and the specification of the engine mount. The mass distribution of the enclosure system can be considered effectively by using the FEM model. The design contains structurally rigid engine bed by FEM, which is for reducing the influence of the flexible vibration, rubber mount selection as well as the acoustic enclosure design.

  • PDF

Development of stiffness adjustable mount for vibration control of marine diesel generator set (박용 발전기세트 진동 제어를 위한 강성 조절형 마운트 개발)

  • Kim, W.H.;Joo, W.H.;Kim, D.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.89-92
    • /
    • 2012
  • Marine diesel generator(D/G) set which is supported with resilient mounts for vibration isolation has been experienced the resonance problem by the main engine or propeller excitations and rigid body modes. Then the avoidance of resonance is difficult because the several excitations and 6 rigid body modes have to be considered simultaneously. In this paper, stiffness adjustable mounts was developed and proposed to control the natural frequencies of installed D/G set. Operating concept of the mount is that the total stiffness of mount can be changed according to the engagement of secondary rubber element in addition to primary one. The performance of mount was verified with the test rig and actual experiment in D/G set.

  • PDF

Optimal Design of Magnetorheological Mount for Ship Engines : Maximum Damping Force (선박용 엔진 MR 마운트의 최적설계: 최대 댐핑력)

  • Park, Joon Hee;Phu, Do Xuan;Hung, Nguyen Quoc;Kang, Ok Hyun;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.273-278
    • /
    • 2013
  • This paper presents optimal design procedures of mount based on a magnetorheological (MR) fluid to isolate the vibration in heavy diesel engine system. At first, frequency response and force-displacement transmissibility methods are used to get required damping force that is necessary for effective vibration isolation. From this result, a new type of high damping force engine mount is proposed and the governing equation of Bingham plastic behavior of MR fluid in flow path is mathematically derived under cylindrical coordinates. Finally, parametric design optimization featuring finite element is performed using ANSYS software to get the required damping force in MR mount system which can be used to reduce engine vibration. Damping force of the MR mount is then determined as an objective function in this analysis based on ANSYS. Furthermore, Magnetic analysis is then applied in this process.

  • PDF

Optimal Design of Magnetorheological Mount for Ship Engines : Maximum Damping Force (선박용 엔진 MR 마운트의 최적설계: 최대 댐핑력)

  • Park, Joon Hee;Do, Xuan Phu;Nguyen, Quoc Hung;Kang, Ok Hyun;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.472-478
    • /
    • 2013
  • This paper presents optimal design procedures of mount based on a magnetorheological(MR) fluid to isolate the vibration in heavy diesel engine system. At first, frequency response and force-displacement transmissibility methods are used to get required damping force that is necessary for effective vibration isolation. From this result, a new type of high damping force engine mount is proposed and the governing equation of Bingham plastic behavior of MR fluid in flow path is mathematically derived under cylindrical coordinates. Finally, parametric design optimization featuring finite element is performed using ANSYS software to get the required damping force in MR mount system which can be used to reduce engine vibration. Damping force of the MR mount is then determined as an objective function in this analysis based on ANSYS. Furthermore, Magnetic analysis is then applied in this process.

Prediction and Reduction of Medium Speed Diesel Engine Vibration using Database (중속디젤엔진 진동 DB 를 이용한 진동 예측과 저감)

  • Kim, Won-Hyun;Lee, Tae-Kyoung;Jung, Kun-Hwa;Lee, Kun-Hee;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.399-406
    • /
    • 2007
  • Structural vibrations of generator sets with medium speed diesel engine mainly come from the resonance between the excitations of engine and natural modes of system. The countermeasures to reduce the vibration or to avoid the resonance are fairly well known to workers. However these processes which are applied after the completion of system need much time consumption and additional cost. In this paper, the vibration measurement results collected for about 8 years were compiled as Database. Based on the database, the change of vibration was predicted with respect to variation of system such as engine type, generator weight, mount stiffness, and etc. As results of study, this paper presents the anti-vibration design procedures of newly composed generator sets using Database in the initial design stage and their effects.

  • PDF