• Title/Summary/Keyword: Diesel Combustion Model

검색결과 118건 처리시간 0.019초

분사율 형상에 따른 디젤분사계의 분무거동에 관한 시뮬레이션 (Simulation of Spray Behaviors by Injection Rate Shapes in Diesel Injection System)

  • 왕우경;장세호;고대권;안수길
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.36-43
    • /
    • 1999
  • Many of thermodynamic-based diesel combustion simulations incorporated a model of fuel spray which attempts to describe how the spray develops according to time. Because the spray geometry is an essential aspect of the fuel-air mixing process, it is necessary to be calculated quantitatively for the purpose of heat release and emission analysis. In this paper, we proposed the calculating method of non-evaporation spray behaviors by injection rate shapes under actual operating conditions of diesel engine. We confirmed the utility of this calculating model as the calculated results were compared with the measured results. This calculating program can be applied usefully to study on the diesel spray behavior.

  • PDF

엔진 사이클 시뮬레이션에 의한 직분식 디젤기관의 NO 배출물에 미치는 흡기충전 조건의 영향에 관한 연구 (A Study on Effect of Intake Charging Conditions upon NO Emissions in a DI Diesel Engine Using Engine Cycle Simulation)

  • 함윤영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.679-687
    • /
    • 2002
  • In this study, a cycle simulation using a two-zone model is carried out to investigate the effect of intake charging conditions such as oxygen concentration, temperature and pressure on NO emissions in a DI diesel engine. The model is validated against measurements in terms of cylinder pressure, torque, BSFC and NOx emissions with 2902 cc DI diesel engine. Calculated results can be summarized as follows. The oxygen concentration in the intake charge is decreased with increasing of EGR rate and equivalence ratio. As the intake oxygen concentration is reduced, the combustion pressure and the burned gas temperature decrease and, as a result, NO formation decreases. Also, the results show that as the intake pressure increases and the intake temperature decreases, NO emissions are effectively reduced.

직분식 디젤엔진에서 EGR이 연소특성 및 배출가스에 미치는 영향에 대한 시뮬레이션 연구 (Engine Cycle Simulation for the Effects of EGR on Combustion and Emissions in a DI Diesel Engine)

  • 함윤영;전광민
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.51-59
    • /
    • 2002
  • In this study, cycle simulation was performed to investigate the effect of EGR on combustion characteristics and emissions including NO and soot using a two-zone model in a DI diesel engine. The NO formation was well predicted for different EGR rate and temperature using a two-zone model. The oxygen in the inlet charge was replaced by CO$_2$ and H$_2$O with EGR. The reduction in the inlet charge oxygen resulted in very large reduction in NO level at the same inlet charge temperature. The effect of EGR was to reduce the burned gas temperature. When EGR was increased from 0% to 15%, the peak flame temperature was decreased by 50$\^{C}$ and it caused about 57% NO reduction. EGR caused increase of the overall inlet charge temperature which offset some of benefit of lower flame temperature resulting from O$_2$ displacement. Cooling the EGR was confirmed to provide additional benefits by lowering NO emission. It also reduced soot emission.

디젤분무의 분열과정에 대한 수치해석 연구 (Numerical Study of Breakup Process of Diesel Spray)

  • 염정국;정우성
    • 대한기계학회논문집A
    • /
    • 제37권12호
    • /
    • pp.1489-1495
    • /
    • 2013
  • 유체의 고압유동은 여러 산업현장에 활용되고, 특히 그 중 내연기관의 연료분사 인젝터가 대표적이며 디젤엔진의 커먼레일 시스템의 경우 1000bar 이상의 압력이 사용된다. 이와 같이 고속으로 분출되는 유체유동의 경우, 노즐을 통해 분사되는 고속의 유체는 주위기체와의 상호작용으로 분열과정을 거치게 된다. 이 분열과정은 연소실 혼합기형성기과정에 영향을 주게 되며, 그 결과 엔진의 연소상태에 까지 영향을 미치게 된다. 따라서 연료분무의 분열과정에 대한 해석은 중요하며, 본 연구에서는 연료분무의 분열을 위한 수치해석 서브모델로 Reitz&Diwakar 및 CAB(Cascade atomization and breakup)모델을 사용하였다. 본 연구의 목적은 분사된 분무의 분열과정의 정확한 해석이며, 분사연료의 분열발생 형태의 빈도 등을 조사하였다. 결과로서 본 연구는 상용 CFD 프로그램(CFX)을 이용하여 디젤분무의 분열과정해석을 위한 적합한 분열모델을 제안한다.

연료분사 노즐 형상이 선박용 중형 디젤 엔진의 NOx에 미치는 영향 연구 (Effect of Fuel Nozzle Configuration on the Reduction of NOx Emission in Medium-speed Marine Diesel Engine)

  • 윤욱현;김병석;류승협;김기두;하지수
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.13-14
    • /
    • 2005
  • Multi-dimensional combustion analysis and experiment has been carried out to investigate the effects of the injector nozzle hole diameter and number on the NOx formation and fuel consumption in HYUNDAI HiMSEN engine. The behavior of spray and combustion phenomena in diesel engine was examined by FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation. Wallfilm model suggested by Mundo, et al. and auto-ignition model suggested by Theobald and Cheng were adopted to investigate the spray-wall interaction characteristics and ignition delay. The information of spray angle and spray tip penetration length was extracted from fuel spray visualization experiment and the fuel injection rate profile was extracted from fuel injection system experiment as an input and verification data for the combustion analysis. Next, the nine different nozzle configurations were simulated to evaluate the effect of injector hole diameter and number on the NOx formation and fuel consumption.

  • PDF

고온·고압 조건에서 바이오디젤의 가연한계 예측 (A Prediction on the Flammability Limits of Biodiesel Fuel in the High Temperature and Pressure Conditions)

  • 임영찬;정준우;서현규
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.157-162
    • /
    • 2019
  • This numerical study was analyzed to predict the flammability limits of biodiesel and diesel fuels in the high temperature and pressure conditions. To achieve this, the biodiesel fuel was simulated with the chemical species of n-heptane (n-C7H16), methyl decanoate (C11H22O2), and methyl-9-decenoate (C11H20O2), and the diesel fuel was substituted the chemical species of n-heptane. The closed 0-D homogeneous reactor model which was employed the 1100 K of ambient temperature and 35 atm of ambient pressure was used for the simulation of constant volume combustion, and the equivalence ratio was changed from 0.3 to 2.5 conditions. In addition, a comparative analysis study was conducted with the results of HCCI engine simulation and flammability limits according to the changes of equivalence ratio. The results of combustion temperature, pressure, and ignition delay were increased when the equivalence ratio elevated from 0.3 to 1.3 conditions because the increase in fuel oxidation rate affects the chemical reaction of the overall combustion process. Furthermore, the CO and NOX production under the rich combustion conditions are considered to have a trade off relationship since the OH radicals and O2 chemical species are greatly affected the CO and NOX production and oxidation processes.

HSDI 디젤엔진의 연료분사계와 연소현상을 연계한 수치해석 (Coupled Simulation of Common Rail Fuel Injection and Combustion Characteristics in a HSDI Diesel Engine)

  • 이석영;허강열
    • 한국연소학회지
    • /
    • 제15권1호
    • /
    • pp.1-11
    • /
    • 2010
  • In this study, the coupled simulation of fuel injection model and three-dimensional KIVA-3V code was tried to develop an algorism for predicting the effects of varying fuel injection parameter on the characteristics of fuel injection and emissions. The numerical simulations were performed using STAR-CD code in order to calculate the intake air flow, and the combustion characteristics is examined by KIVA-3V code linked with the conditional moment closure(CMC) model to predict mean turbulent reaction rate. Parametric investigation with respect to twelve relevant injection parameters shows that appropriate modification of control chamber orifice diameter, needle valve spring constant and nozzle chamber orifice diameter can significantly reduce NOx and soot emissions. Consequently, it is needed to optimize the fuel injection system to reduce the specific emissions such as NOx and soot.

디젤 기관 단일 영역 모델 열발생율 계산의 오차 보상에 관한 연구 (A Study on the Heat Release Analysis to Compensate the Error due to Assumption of Single Zone in Diesel Engine)

  • 류승협;김기두;윤욱현;하지수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.572-579
    • /
    • 2006
  • Accurate heat release analysis based on the cylinder pressure trace is important for evaluating combustion process of diesel engines. However, traditional single-zone heat release models (SZM) have significant limitations due mainly to their simplified assumptions of uniform charge and homogeneity while neglecting local temperature distribution inside cylinder during combustion process. In this study, a heat release analysis based on single-zone model has been evaluated by comparison with computational simulation result using Fire-code, which is based on multidimensional model (MDM). The limitations of the single-zone assumption have been estimated, To overcome these limitations, an improved model that includes the effects of spatial non-uniformity has been applied. From this improved single-zone heat release model (Improved-SZM), two effective values of specific heat ratios, denoted by ${\gamma}_V$ and ${\gamma}_H$ in this study, have been introduced. These values are formulated as the function of charge temperature changing rate and overall equivalence ratio. Also, it is applied that each equation of ${\gamma}_V$ and ${\gamma}_H$ has respectively different slopes according to several meaningful periods during combustion progress. The heat release analysis results based on improved single-zone model gives a good agreement with FIRE-code results over the whole range of operating conditions of target engine, Hyundai HiMSEN H21/32.

선박용 가스엔진의 NOx 배출량예측에 관한 연구 (Prediction of NOx emission for marine gas engines)

  • 장하식;이지웅;이강기;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.658-665
    • /
    • 2014
  • 선박용 디젤엔진에서 천연가스의 사용기술은 NOx, SOx 및 GHG의 배출을 단독으로 크게 삭감할 수 있는 기술이다. 특히 셰일가스의 등장으로 가스의 공급이 확대될 것으로 예상되는 가운데 추진기관용 2행정기관에의 이용이 적극적으로 개발 검토되고 있다. 가스엔진의 출력성능은 디젤기관과 비교하여 큰 차이를 보이지 않았으며 연료소비율은 약간 개선되는 것으로 보고되고 있다. 그러나 배기특성에 있어서는 연소기술에 따라서 다른 성능을 나타내고 있으며 희박연소기술에 의하여 NOx 배출량은 85%정도의 감축이 가능한 것으로 알려져 있다. 본 연구에서는 가스엔진의 연소생성물의 발생량을 시뮬레이션 할 수 있는 프로그램을 개발하였다. 개발된 프로그램은 희박연소의 영향은 물론 예혼합연소와 확산연소에 의한 영향도 시뮬레이션 할 수 있는 기능을 가지고 있다. 이를 위해서 실린더 내 상태변화는 2영역모델(Two-zone model)을 이용하고 열발생율 패턴은 Wiebe 함수를 이용하며, 공연비를 입력데이터로 하여 다양한 연소조건에서의 배기생성물의 발생량 예측을 가능하게 하였다.

층류화염편 모델을 이용한 난류 비예혼합 화염장 해석 (Flamelet Modeling of Thrbulent Nonpremixed Flames)

  • 김용모
    • 한국연소학회지
    • /
    • 제5권2호
    • /
    • pp.1-8
    • /
    • 2000
  • The flamelet concept has been widely applied to numerically simulate complex phenomena occurred in nonpremixed turbulent flames last two decades, and recently broadened successfully the applicable capabilities to various combustion problems from simple laboratory flames to gas turbine engine, diesel spray combustion and partially premixed flames. The paper is focused on brief review of recently noticeable work related to flamelet modeling, which includes Lagrangian flamelet approach, RIF concept as well as steady flamelet approach. The limitation of steady flamelet assumption, the effect of transient behavior of flamelets, and the effect of spray vaporization on PDF model have been discussed.

  • PDF