• Title/Summary/Keyword: Dies

Search Result 886, Processing Time 0.023 seconds

Comparison of Wear Amount of Surface Coating Layers on Dies for Cold-Stamped Products with MART1470 (MART1470 판재 냉간 프레스 성형용 금형 코팅층의 마모량 비교)

  • Son, M.K.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 2022
  • In this paper, wear characteristics of PVD coatings were compared on the die surface for cold stamping of MART1470 steel sheet with the finite element analysis and the pin-on-disc wear test. Three types of PVD coatings (CrN, TiAlCrN, and MoS2TiCr(W)N) were considered for the tool surface made of STD11 material. The stamping process of an auto-body part was analyzed with the finite element method. Ranges of process variables for the wear test such as contact pressure, relative speed, and sliding distance were predicted from analysis results. In order to quantitatively analyze wear characteristics of each coating, the amount of wear was measured and compared according to process variables with the pin-on-disc wear test. The influence of each process variable was investigated and the wear characteristics of the three coating layers were quantitatively compared. It was confirmed that the wear characteristics of MoS2TiCr(W)N coating were better than those of CrN and TiAlCrN. It was noted that the proposed prediction approach could predict and respond to the wear phenomenon occurring in the stamping process.

Mold-design Verification of Ball Housing Insert Die in Non Processing Type Multi-stage Cold Forging (다단냉간단조 비가공 타입에서 볼하우징 인서트 다이의 금형설계 검증)

  • Hwang, Won-Seok;Choi, Jong-Won;Jung, Eu-Enn;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.8-15
    • /
    • 2021
  • Cold forging is a method in which molding is performed at room temperature. It has a high material recovery rate and dimensional precision and produces excellent surface quality, and it is mainly used for the production of bolted or housing products. The lifespan of cold forging molds is generally determined by the wear of the mold, plastic deformation of the mold, and fatigue strength. Cold forging molds are frequently damaged due to fatigue destruction rather than wear and plastic deformation in a high-temperature environment as it is molded at room temperature without preheating the raw material and mold. Based on the results analyzed through FEM, an effective mold structure design method was proposed by analyzing the changes in tensile and compressive stresses on molds according to the number of molds and reinforcement rings and comparing the product geometry and mold stress using three existing mold models.

Development of Semiconductor Packaging Technology using Dicing Die Attach Film

  • Keunhoi, Kim;Kyoung Min, Kim;Tae Hyun, Kim;Yeeun, Na
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.361-365
    • /
    • 2022
  • Advanced packaging demands are driven by the need for dense integration systems. Consequently, stacked packaging technology has been proposed instead of reducing the ultra-fine patterns to secure economic feasibility. This study proposed an effective packaging process technology for semiconductor devices using a 9-inch dicing die attach film (DDAF), wherein the die attach and dicing films were combined. The process involved three steps: tape lamination, dicing, and bonding. Following the grinding of a silicon wafer, the tape lamination process was conducted, and the DDAF was arranged. Subsequently, a silicon wafer attached to the DDAF was separated into dies employing a blade dicing process with a two-step cut. Thereafter, one separated die was bonded with the other die as a substrate at 130 ℃ for 2 s under a pressure of 2 kgf and the chip was hardened at 120 ℃ for 30 min under a pressure of 10 kPa to remove air bubbles within the DAF. Finally, a curing process was conducted at 175 ℃ for 2 h at atmospheric pressure. Upon completing the manufacturing processes, external inspections, cross-sectional analyses, and thermal stability evaluations were conducted to confirm the optimality of the proposed technology for application of the DDAF. In particular, the shear strength test was evaluated to obtain an average of 9,905 Pa from 17 samples. Consequently, a 3D integration packaging process using DDAF is expected to be utilized as an advanced packaging technology with high reliability.

Fabrication and Densification of a Nanocrystalline CoSi Compound by Mechanical Alloying and Spark Plasma Sintering

  • Chung-Hyo Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.3
    • /
    • pp.101-105
    • /
    • 2023
  • A mixture of elemental Co50Si50 powders was subjected to mechanical alloying (MA) at room temperature to prepare a CoSi thermoelectric compound. Consolidation of the Co50Si50 mechanically alloyed powders was performed in a spark plasma sintering (SPS) machine using graphite dies up to 800 ℃ and 1,000 ℃ under 50 MPa. We have revealed that a nanocrystalline CoSi thermoelectric compound can be produced from a mixture of elemental Co50Si50 powders by mechanical alloying after 20 hours. The average grain size estimated from a Hall plot of the CoSi intermetallic compound prepared after 40 hours of MA was 65 nm. The degree of shrinkage of the consolidated samples during SPS became significant at about 450 ℃. All of the compact bodies had a high relative density of more than 94 % with a metallic glare on the surface. X-ray diffraction data showed that the SPS compact produced by sintering mechanically alloyed powders for 40-hours up to 800 ℃ consisted of only nanocrystalline CoSi with a grain size of 110 nm.

Automatic Tool Selection and Path Generation for NC Rough Cutting of Sculptured Surface (자유곡면의 NC 황삭가공을 위한 자동 공구 선정과 경로 생성)

  • Hong, Sung Eui;Lee, Kun woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.28-41
    • /
    • 1994
  • An efficient algorithm is proposed to select the proper tools and generate their paths for NC rough cutting of dies and molds with sculptured surfaces. Even though a milling process consists of roughing, semi-finishing, and finishing, most material is removed by a rough cutting process. Therfore it can be said that the rough cutting process occupy an important portion of the NC milling process, and accordingly, an efficient rough cutting method contributes to an efficient milling process. In order work, the following basic assumption is accepted for the efficient machining. That is, to machine a region bounded by a profile, larger tools should be used in the far inside and the region adjacent to relatively simple portion of the boundary while smaller tools are used in the regions adjacent to the relatively complex protion. Thus the tools are selected based on the complexity of the boundary profile adjacent to the region to be machined. An index called cutting path ratio is proposed in this work as a measure of the relative complexity of the profile with respect to a tool diameter. Once the tools are selected, their tool paths are calculated starting from the largest to the smallest tool.

  • PDF

Tectonic Geomorphology on Yugye-Bogyeongsa Area of Yangsan Fault Zone (양산단층대 북부 유계-보경사지역의 조구조지형학적 분석)

  • Lee, Cho Hee;Seong, Yeong Bae;Oh, Jeong-Sik;Kim, Dong Eun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.93-106
    • /
    • 2019
  • The Yangsan Fault is one of the main fault systems in the Korean peninsula. It can be divided into three segments (northern, central, and southern) by its paleoseismic and structural geologic properties. Based on the geomorphic features of the northern segment, which includes the Yugye Fault, we identified deflected streams as a geomorphic marker of strike-slip component of the fault, and knickpoints along the streams as evidence of dip-slip component of the fault. Geomorphic analyses showed that (1) the horizontal displacements of deflected streams decreased and (2) the retreat amounts of knickpoints tend to increased toward north along the lineament. We interpreted the variations caused by strain partitioning; that is, there might be some increases of the vertical component toward north, whereas the main strike-slip fault system dies out, splaying into horsetail structure toward north. Based on the response time of the landforms, these interpretations imply that (1) there were differences between horizontal slip rate and vertical slip rate along strike, and/or (2) there were different timings between horizontal and vertical deformations by fault.

Unknown Power, Impotentiality in Herman Melville's Pierre, or the Ambiguities

  • Chang, Jungyoon
    • Journal of English Language & Literature
    • /
    • v.56 no.3
    • /
    • pp.557-575
    • /
    • 2010
  • Pierre breaks the rules of convention and acquires the 'potential not to do.' To transform the traditional hero into the new potential subject, Pierre moves from his hometown, Saddle Meadows, New York City to the dungeon of the city prison and creates three different relationships that symbolize what ideology and principles repress his mind and behavior and how he handles them. Firstly, in Saddle Meadows, Pierre has a narcissistic relationship with his mother, Mary, who teaches him the principles of American manhood and forces him to be docile: he has to obey Mary's order that a man should be a gentleman. Therefore, since he does not know his potential, he does not create his own work and is involved in plagiarism. Secondly, in New York City, Pierre creates an associated relationship with Isabel, his half-sister, who represents an ambiguous and mysterious character and has the 'potential not to do' that leads Pierre to destroys the beliefs of American manhood and performs the potential to do. Consequently, Pierre puts himself in an extreme situation and is absolutely liberated from the influence of his dead father, who unconsciously controls Pierre's behavior and thoughts. Thus, he makes a dissociated relationship with his father. In the dungeon, he physically dies, but symbolically metamorphoses into Isabel, so that he blurs the differences between Isabel and himself. Furthermore, he never stays in his own way: in this on-going process, Pierre cannot determine which is good or bad, legitimate or illegitimate and life or death.

Development of a Portable Measurement Instrument for Quality Control of Large-sized Die (대형 금형의 품질관리를 위한 이동식 측정기 개발)

  • Park, Jong-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1844-1849
    • /
    • 2014
  • Existing measurement methods using microscopes or surface roughness measurement instruments for surface control in manufacturing die are low in their efficiency when they are applied in industrial fields due to structural problems. Therefore, it is very important to develop a measurement and analysis system which can enhance efficiency in the measurement of different-sized manufacturing dies and provide quality control regardless of location. This study aimed at the development of a portable surface measurement system to satisfy this need. This measurement system was designed and manufactured in such a way as to divide it into three parts: the Base, the Body, and the Optical system. As a result of testing the system, the surface roughness was measured with an accuracy between 94.9 and 99.9%, and the deviation in the measurement value of a circle was within $2{\mu}m$.

Impedance and Read Power Sensitivity Evaluation of Flip-Chip Bonded UHF RFID Tag Chip (플립-칩 본딩된 UHF RFID 태그 칩의 임피던스 및 읽기 전력감도 산출방법)

  • Yang, Jeenmo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.203-211
    • /
    • 2013
  • UHF RFID tag designers usually ndde the chip impedance and read power sensitivity value obtained when a tag chip is mounted on a chip pad. The chip impedance, however, is not able to be supplied by chip manufacturer, since the chip impedance is varied according to tag designs and fabrication processes. Instead, the chip makers mostly supply the chip impedances measured on the bare dies. This study proposes a chip impedance and read power sensitivity evaluation method which requires a few simple auxiliary and some RF measuring equipment. As it is impractical to measure the chip impedance directly at mounted chip terminals, some form test fixture is employed and the effect of the fixture is modeled and de-embeded to determine the chip impedance and the read power sensitivity. Validity and accuracy of the proposed de-embed method are examined by using commercial RFID tag chips as well as a capacitor and a resistor the value of which are known.

Study on Effects of Solder Joint aging on the Reliability of Embedded Package Solder Joints using Numerical analysis (수치해석을 이용한 임베딩 패키지 솔더 조인트의 신뢰성에 미치는 에이징 효과 연구)

  • Cho, Seunghyun;Jang, Junyoung;Ko, Youngbae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • In this paper, the effects of solder joint aging on the reliability of embedded package solder joints were investigated using numerical analysis by finite element method. Solder joints were SAC305 with aging time 0, 60, 180 days. For reliability analysis, warpage of package and equivalent creep strain (ECS) and total strain energy density (TSED) of solder joint were analyzed. The analysis results show that the package warpage is decreased in the case of the embedded package compared to the non embedded package, and the reliability life of the solder joint is predicted to be high. Also, it was interpreted that the longer the aging time, the less the warpage of the embedded package, but the reliability life of the solder joint would be shortened.