• Title/Summary/Keyword: Dielectric material

Search Result 2,635, Processing Time 0.028 seconds

Design of GPS Receiving Antenna Installed in a Missile's Warhead (미사일 탑재형 GPS 안테나 설계)

  • Lee Jong-Min;Woo Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.900-912
    • /
    • 2006
  • A GPS receiving antenna installed in the missile's warhead is designed and fabricated at a center frequency 1.575 GHz. The circular shaped antenna is installed in the middle of the warhead where the antenna's patch and the ground plane are connected with a hollow cylindrical shaped short pin. Using the dual feeding and phase difference method, an omni-directional radiation pattern which direction is normal to the missile's axis(H-plane) is obtained. The optimized diameters of the circular patch and the cylindrical ring typed shorting pin of the GPS receiving antenna which use the FR4.material(dielectric constant $\varepsilon_r=4.6$) are 59.5 mm and 14 mm, respectively. The cylindrical body with diameter 100 mm and height 500 mm is attached to the lower part of the warhead in order to complete the missile figure. The radiation patterns are measured by changing the angle and phase between the dual feeding points. When the phase difference of dual feeding is $100^{\circ}$ and the angle between the dual feeding points is $100^{\circ}$, the nearly omni-directional radiation pattern in the H-plane is obtained. In this case, the antenna gain is -5.55 dBd and the relative level difference between the maximum and the minimum radiation intensity is 3.98 dB.

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering (RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구)

  • Ha, Rin;Kim, Shin-Ho;Lee, Hyun-Ju;Park, Young-Bin;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.606-610
    • /
    • 2010
  • Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.

In Situ Monitoring of the MBE Growth of AlSb by Spectroscopic Ellipsometry

  • Kim, Jun-Yeong;Yun, Jae-Jin;Lee, Eun-Hye;Bae, Min-Hwan;Song, Jin-Dong;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.342-343
    • /
    • 2013
  • AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. And AlSb offers significant potential for devices such as quantum-well lasers, laser diodes, and heterojunction bipolar transistors. In this work we study molecular beam epitaxy (MBE) growth of an unstrained AISb film on a GaAs substrate and identify the real-time monitoring capabilities of in situ spectroscopic ellipsometry (SE). The samples were fabricated on semi-insulating (0 0 1) GaAs substrates using MBE system. A rotating sample stage ensured uniform film growth. The substrate was first heated to $620^{\circ}C$ under As2 to remove surface oxides. A GaAs buffer layer approximately 200 nm- thick was then grown at $580^{\circ}C$. During the temperature changing process from $580^{\circ}C$ to $530^{\circ}C$, As2 flux is maintained with the shutter for Ga being closed and the reflection high-energy electron diffraction (RHEED) pattern remaining at ($2{\times}4$). Upon reaching the preset temperature of $530^{\circ}C$, As shutter was promptly closed with Sb shutter open, resulting in the change of RHEED pattern from ($2{\times}4$) to ($1{\times}3$). This was followed by the growth of AlSb while using a rotating-compensator SE with a charge-coupled-device (CCD) detector to obtain real-time SE spectra from 0.74 to 6.48 eV. Fig. 1 shows the real time measured SE spectra of AlSb on GaAs in growth process. In the Fig. 1 (a), a change of ellipsometric parameter ${\Delta}$ is observed. The ${\Delta}$ is the parameter which contains thickness information of the sample, and it changes in a periodic from 0 to 180o with growth. The significant change of ${\Delta}$ at~0.4 min means that the growth of AlSb on GaAs has been started. Fig. 1b shows the changes of dielectric function with time over the range 0.74~6.48 eV. These changes mean phase transition from pseudodielectric function of GaAs to AlSb at~0.44 min. Fig. 2 shows the observed RHEED patterns in the growth process. The observed RHEED pattern of GaAs is ($2{\times}4$), and the pattern changes into ($1{\times}3$) with starting the growth of AlSb. This means that the RHEED pattern is in agreement with the result of SE measurements. These data show the importance and sensitivity of SE for real-time monitoring for materials growth by MBE. We performed the real-time monitoring of AlSb growth by using SE measurements, and it is good agreement with the results of RHEED pattern. This fact proves the importance and the sensitivity of SE technique for the real-time monitoring of film growth by using ellipsometry. We believe that these results will be useful in a number of contexts including more accurate optical properties for high speed device engineering.

  • PDF

A study on the dielectric properties of the $Pb(Fe_{1/2}Nb_{1/2})O_3-Pb(Fe_{2/3}W_{1/3})O_3-Ba(Cu_{1/2}W_{1/2})O_3$ ceramics ($Pb(Fe_{1/2}Nb_{1/2})O_3-Pb(Fe_{2/3}W_{1/3})O_3-Ba(Cu_{1/2}W_{1/2})O_3$세라믹의 유전특성에 관한 연구)

  • 정장호;류기원;이영희
    • Electrical & Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.150-158
    • /
    • 1991
  • 본 연구에서는 0.80Pb(F $e_{1}$2/N $b_{1}$2/) $O_{3}$-(0.20-x)Pb(F $e_{2}$3/ $W_{1}$3/) $O_{3-x}$Ba(C $u_{1}$2/ $W_{1}$2/) $O_{3}$ (x=0.01, 0.02, 0.03) 세라믹을 소결온도 및 시간을 각각 860~960[.deg.C], 2시간으로 하여 일반 소성법으로 제작하였다. 시편의 조성비와 소결온도에 따른 구조적, 유전적 특성을 조사하였으며 유전손실 특성의 개선을 위해 조성 0.80Pb(F $e_{1}$2/N $b_{1}$2/) $O_{3}$-0.18Pb (F $e_{2}$3/ $W_{1}$3/) $O_{3}$-0.02Ba(C $u_{1}$2/ $W_{1}$2/) $O_{3}$시편에 Mn $O_{2}$를 0~1.25[wt%]로 첨가한 후 유전특성의 변화를 관찰하였다. Mn $O_{2}$의 첨가량이 증가함에 따라 결정립의 크기와 유전상수는 점차 감소하였다. 소결밀도는 900[.deg.C]에서 소결시킨 시편의 경우 최대값을 나타내었다. Ba(C $u_{1}$2/ $W_{1}$2/) $O_{3}$의 양이 0.01에서 0.03[mol]로 증가함에 따라 상전이온도는 38[.deg.C]에서 2[.deg.C]로 감소하였다. 조성 0.80Pb(F $e_{1}$2/N $b_{1}$2/) $O_{3}$0.18Pb(F $e_{2}$3/ $W_{1}$3/) $O_{3}$-0.02Ba(C $u_{1}$2/ $W_{1}$2/) $O_{3}$에 Mn $O_{2}$가 0.25[wt%] 첨가된 시편의 20[.deg.C]에서의 유전상수는 16,700으로 최대값을 유전손실을 1.28[%]로 최소값을 나타내었다. 또한 모든 시편은 온도 및 주파수에 따라 유전상수가 완만하게 변화하는 유전이완 특성을 나타내었다.다.

  • PDF

Effects of Particle Size on Properties of PZT -Based Thick Films (입자 크기가 PZT계 압전 후막의 물성에 미치는 영향)

  • 김동명;김정석;천채일
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.375-380
    • /
    • 2004
  • Pb(Ni$\_$1/3/Nb$\_$2/3/)O$_3$-PbZrO$_3$-PbTiO$_3$ thick films were screen-printed on platinized alumina substrates and fired at 800-1000$^{\circ}C$. Two kinds of powders with different particle size were prepared by attrition and ball milling methods. Effects of particle size of starting material on the microstructure and electrical properties of the thick films were investigated. Average particle size of attrition milled-powder (0.44 ${\mu}$m) was much smaller than that of ball milled-powder (2.87 ${\mu}$m). Average grain size of the thick film prepared from attrition-milled powder was smaller than that of the thick film prepared from ball-milled powder at the sintering temperature of 800$^{\circ}C$. However, the difference in average particle size became smaller with increasing the sintering temperature. Thick films prepared from attrition-milled powders showed more uniform and denser microstructures at all firing temperatures. Thick films prepared from attrition-milled powders had better electrical properties at the firing temperature above 900$^{\circ}C$ than thick films prepared from ball-milled powders. Dielectric constant, remanent polarization and coercive field of the thick film prepared from attrition-milled powders and fired at 900$^{\circ}C$ were 559, 16.3 ${\mu}$C/cm$^2$, and 51.3 kV/cm, respectively.

Implementation of Front End Module for 2.4GHz WLAN Band (2.4GHz 무선랜 대역을 위한 Front End Module 구현)

  • Lee, Yun-Sang;Ryu, Jong-In;Kim, Dong-Su;Kim, Jun-Chul;Park, Jong-Dae;Kang, Nam-Kee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.19-25
    • /
    • 2008
  • In this paper, the front end module (FEM) was proposed for 2.4GHz WLAN band by LTCC multilayer application. The FEM was composed of power amplifier IC, switch IC, and LTCC module. LTCC module consists of output matching circuit and lowpass filter as Tx part, bandpass filter as Rx part. Design of output matching circuit for LTCC was used matching parameter from output matching circuit based on lumped circuit on the PCB board. The dielectric constant of LTCC substrate is 9. The substrate was composed of total 26 layers with each 30um thickness. Ag paste was used for the internal pattern as the conductor material. The size of the module is $4.5mm{\times}3.2mm{\times}1.4mm$. The fabricated FEM showed the gain of 21dB, ACPR of less than -31dBc first side lobe and Less than -59dBc second side lobe and the output power of 23Bm at P1dB.

  • PDF

A Study of Failure Mechanism through abnormal AlXOY Layer after pressure Cooker Test for DRAM device (DRAM 소자의 PCT 신뢰성 측정 후 비정상 AlXOY 층 형성에 의해 발생된 불량 연구)

  • Choi, Deuk-Sung;Jeong, Seung-Hyun;Choi, Chae-Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.31-36
    • /
    • 2018
  • This research scrutinizes the reason of failure after pressure cooker test (PCT) for DRAM device. We use the physical inspecting tools, such as microscope, SEM and TEM, and finally find the discolor phenomenon, corrosion of Al and delamination of inter-metal dielectric (IMD) in the failed devices after PCT. Furthermore, we discover the abnormal $Al_XO_Y$ layer on Al through the careful additional measurements. To find the reason, we evaluate the effect of package ball size and pinhole in passivation layer. Unfortunately, those aren't related to the problems. We also estimate halide effect of Al. The halogens such like Cl are contained within EMC material. Those result in the slight improving of PCT characteristics but do not perfectly solve the problems. We make a hypothesis of Galvanic corrosion. We can find the residue of Ti at the edge of pad open area. We can see the improving the PCT characteristics by the time split of repair etch. The possible mechanism of the PCT failure can be deduced as such following sequence of reactions. The remained Ti reacts on the pad Al by Galvanic corrosion. The ionized Al is easily react with the $H_2O$ supplied under PCT environment, and finally transfers to the abnormal $Al_XO_Y$ layer.

Hexagonal Boron Nitride Monolayer Growth without Aminoborane Nanoparticles by Chemical Vapor Deposition

  • Han, Jaehyu;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.409-409
    • /
    • 2014
  • Recently hexagonal boron nitride (h-BN), III-V compound of boron and nitrogen with strong covalent $sp^2$ bond, is a 2 dimensional insulating material with a large direct band gap up to 6 eV. Its outstanding properties such as strong mechanical strength, high thermal conductivity, and chemical stability have been reported to be similar or superior to graphene. Because of these excellent properties, h-BN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Ultra flat and charge impurity-free surface of h-BN is also an ideal substrate to maintain electrical properties of 2 dimensional materials such as graphene. To synthesize a single or a few layered h-BN, chemical vapor deposition method (CVD) has been widely used by using an ammonia borane as a precursor. Ammonia borane decomposes into hydrogen (gas), monomeric aminoborane (solid), and borazine (gas) that is used for growing h-BN layer. However, very active monomeric aminoborane forms polymeric aminoborane nanoparticles that are white non-crystalline BN nanoparticles of 50~100 nm in diameter. The presence of these BN nanoparticles following the synthesis has been hampering the implementation of h-BN to various applications. Therefore, it is quite important to grow a clean and high quality h-BN layer free of BN particles without having to introduce complicated process steps. We have demonstrated a synthesis of a high quality h-BN monolayer free of BN nanoparticles in wafer-scale size of $7{\times}7cm^2$ by using CVD method incorporating a simple filter system. The measured results have shown that the filter can effectively remove BN nanoparticles by restricting them from reaching to Cu substrate. Layer thickness of about 0.48 nm measured by AFM, a Raman shift of $1,371{\sim}1,372cm^{-1}$ measured by micro Raman spectroscopy along with optical band gap of 6.06 eV estimated from UV-Vis Spectrophotometer confirm the formation of monolayer h-BN. Quantitative XPS analysis for the ratio of boron and nitrogen and CS-corrected HRTEM image of atomic resolution hexagonal lattices indicate a high quality stoichiometric h-BN. The method presented here provides a promising technique for the synthesis of high quality monolayer h-BN free of BN nanoparticles.

  • PDF

Plasmonic Enhanced Light Absorption by Silver Nanoparticles Formed on Both Front and Rear Surface of Polycrystalline Silicon Thin Film Solar Cells

  • Park, Jongsung;Park, Nochang;Varlamov, Sergey
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.493-493
    • /
    • 2014
  • The manufacturing cost of thin-film photovoltics can potentially be lowered by minimizing the amount of a semiconductor material used to fabricate devices. Thin-film solar cells are typically only a few micrometers thick, whereas crystalline silicon (c-Si) wafer solar cells are $180{\sim}300\mu}m$ thick. As such, thin-film layers do not fully absorb incident light and their energy conversion efficiency is lower compared with that of c-Si wafer solar cells. Therefore, effective light trapping is required to realize commercially viable thin-film cells, particularly for indirect-band-gap semiconductors such as c-Si. An emerging method for light trapping in thin film solar cells is the use of metallic nanostructures that support surface plasmons. Plasmon-enhanced light absorption is shown to increase the cell photocurrent in many types of solar cells, specifically, in c-Si thin-film solar cells and in poly-Si thin film solar cell. By proper engineering of these structures, light can be concentrated and coupled into a thin semiconductor layer to increase light absorption. In many cases, silver (Ag) nanoparticles (NP) are formed either on the front surface or on the rear surface on the cells. In case of poly-Si thin film solar cells, Ag NPs are formed on the rear surface of the cells due to longer wavelengths are not perfectly absorbed in the active layer on the first path. In our cells, shorter wavelengths typically 300~500 nm are also not effectively absorbed. For this reason, a new concept of plasmonic nanostructure which is NPs formed both the front - and the rear - surface is worth testing. In this simulation Al NPs were located onto glass because Al has much lower parasitic absorption than other metal NPs. In case of Ag NP, it features parasitic absorption in the optical frequency range. On the other hand, Al NP, which is non-resonant metal NP, is characterized with a higher density of conduction electrons, resulting in highly negative dielectric permittivity. It makes them more suitable for the forward scattering configuration. In addition to this, Ag NP is located on the rear surface of the cell. Ag NPs showed good performance enhancement when they are located on the rear surface of our cells. In this simulation, Al NPs are located on glass and Ag NP is located on the rear Si surface. The structure for the simulation is shown in figure 1. Figure 2 shows FDTD-simulated absorption graphs of the proposed and reference structures. In the simulation, the front of the cell has Al NPs with 70 nm radius and 12.5% coverage; and the rear of the cell has Ag NPs with 157 nm in radius and 41.5% coverage. Such a structure shows better light absorption in 300~550 nm than that of the reference cell without any NPs and the structure with Ag NP on rear only. Therefore, it can be expected that enhanced light absorption of the structure with Al NP on front at 300~550 nm can contribute to the photocurrent enhancement.

  • PDF

A Study of a Method to Evaluate the Corrosion Resistance of Al2O3 Coated Vacuum Components for Semiconductor Equipment (반도체 장비용 Al2O3 코팅 진공부품의 내부식성 평가 연구)

  • You, S.M.;Yun, J.Y.;Kang, S.W.;Shin, J.S.;Seong, D.J.;Shin, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.175-182
    • /
    • 2008
  • This study is concerned with the evaluation of the corrosion resistance of coated semiconductor equipment parts with various processes. To select the appropriate basis for evaluation, replacement parts were observed during the semiconductor manufacturing process. This study also ran a dry corrosion test using $Al_2O_3$, which is mostly used as a coating material. This test quantitatively measured the efficiency of coated parts. Surface morphology, leakage current and breakdown voltage were also evaluated. This study showed that a dry corrosion process led to the drop of electrical properties, for example, the leakage current increase and the dielectric strength decrease. The surface morphology test displayed that surface damage is largely dependent on the exposure time to corrosive environments. By using the values that changed during the corrosion process, it may be possible to contrive a method to evaluate the efficiency of coated parts with various processes.