• Title/Summary/Keyword: Dielectric lens antenna

Search Result 15, Processing Time 0.027 seconds

Characterizations of Spherical Luneburg Lens Antennas with Air-gaps and Dielectric Losses

  • Kim, Kang-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 2001
  • In this paper, spherical Luneburg lens antennas have been systematically analyzed using the Eigenfunction Expansion Method (EEM), The developed technique has capability of performing a complete 3-D analysis to characterize the multi-layered dielectric spherical lens with arbitrary permittivity and permeability. This paper describes the analysis technique, and presents the results of the parametric study of Luneburg lens antennas by varying design parameters suoh as the diameter of the lens antenna (up to 80 wavelength), number of spherical shells (up to 30 shells), air-gaps between spherical shells, and dielectric loss of the material. Many representative engineering design curves including the far-field patterns, wide-angle sidelobe characterizations, antenna efficiency have been presented.

  • PDF

Development of UWB Sinuous Antenna with Dielectric Lens for 3~6 GHz Band Application (유전체 렌즈를 가진 3~6GHz대용 UWB 시뉴어스 안테나 개발)

  • Lee, Dong Real
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.239-244
    • /
    • 2015
  • Recently, Impulse radars using UWB technologies are widely use for measuring distance, or for transmitting uncompressed high resolution videos. However, since the UWB band spans over octave bands, it is not easy to design such a system. Wide band impedance matching is required for antennas and other RF area. In this study, we designed and fabricated sinuous antenna for 3~6 GHz octave band application. We also designed and attached a dielectric lens to improved the directional gain of the antenna. The gain of the antenna was 6~10 dBi. The dielectric lens attached sinuous antenna was used to transmit HD video data. The maximum reach distance was 90 meter with 10mW power.

A Novel Broadband Horn Antenna with Quadruple-Ridged Waveguide and Dielectric Lens (4중 릿지 도파관과 렌즈를 이용한 새로운 광대역 혼 안테나)

  • Lee, Kee-Oh;Park, Dong-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper, a design method of broadband horn antenna having 3:1 bandwidth and multiple polarization characteristics is proposed. The feeding section of the antenna adopts quadruple-ridged waveguide type for broadband and multiple polarization characteristics of the antenna. By inserting a shorting bar in the cavity structure with a semi-sphere type back short, the return loss at the feeding section was minimized. A corrugated dielectric lens is designed for phase compensation and lens-surface matching at the antenna aperture, which improves the antenna beam pattern. The validity of the design method is verified by indicating the measured data of the antenna.

A Filtering Antenna for Wireless In-Flight Entertainment Communication System at Millimeter-Wave Band (기내 엔터테인먼트 통신 시스템을 위한 밀리미터파 대역의 여파기 결합 안테나)

  • Seo, Tae-Yoon;Lee, Jae-Wook;Cho, Choon-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • In this paper, H-plane filtering-horn antenna operating at millimeter frequency band is proposed with embedded filter and three-layered dielectric lens for frequency selection and maintenance of main beam direction, respectively. The waveguide-typed filter and H-plane sectoral horn antenna are replaced with considerably size-reduced PCB substrate-typed filtering antenna using via fences and several posts. The waveguide-typed filter and H-plane sectoral horn antenna were designed in air-filled waveguide and then combined into size-reduced PCB substrate. For the control of the thickness of dielectric lens, single and multi dielectric lens have been employed. As a result of antenna gain, 8 and 13.5 dBi have been obtained at 41.5 GHz, respectively, from the simulations of single and multi-lens antennas.

Design and manufacture of horn lens antennas of 80 GHz MM wave FMCW radar for cryogenic fluids level measurement

  • Jeon, S.M.;Mun, J.M.;Lee, S.C.;Sim, K.D.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.29-33
    • /
    • 2022
  • Recently, development of a cryogenic fluids storage tank for storing or transporting liquid hydrogen is actively in progress. In cryogenic fluids storage tanks, hydrogen evaporates due to the extreme temperature difference inside and outside the tank. As the mass of the cryogenic fluids changes with continuous vaporization, the fluids level also changes. Therefore, there is need for a method of accurately measuring the level change in the storage tank. In the case of general cryogenic fluids, it is difficult to accurately measure the level because the dielectric constant is very low. As a method of measuring cryogenic fluids level with low dielectric constant, it can be used an Millimeter wave (MM wave) FMCW radar sensor. However, the signal sensitivity is very weak and the level accuracy is poor. In this paper, the signal sensitivity is improved by designing the horn lens antenna of the existing 80 GHz FMCW radar sensor. Horn lens antenna is fabricated by FDM/SLA type 3D printer according to horn and lens characteristics. The horn is used to increase the signal gain and the lens improves the signal straightness. This makes it possible to measure the level of cryogenic fluids with a low dielectric constant.

Regression Progress to Evaluate Metal Scale Thickness using Microwave (전파를 이용한 도체 Scale 분석에 Regression Progress 기법 이용 연구)

  • Muhn, Sung-Jin;Park, Wee-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.1-5
    • /
    • 2010
  • This paper deals with a method to measure the thickness of scale-layer, iron oxide formed on the surface of the rolling steel, using a dielectric lens antenna. The dielectric lens antenna has an independent characteristic with the frequency in the X-band and changes the spherical wave radiated from a horn antenna into a plane wave at the focusing point. Using this concept, we regard a scale-layer on the rolling steel as a dielectric-PEC(Perfect Electric Conductor) layer and apply a theoretical analysis of the normal-incident plane wave. To reduce the phase error arising from the use of the dielectric lens antenna, this paper utilizes a regression process algorithm. In comparison with the conventional iteration algorithm, the present algorithm led to a unique solution for the thickness of the scale-layer.

A High Gain Corrugated Horn Antenna with Dielectric Lens (유전체 렌즈가 삽입된 고이득 Corrugated 혼 안테나)

  • Lee, Hojoo;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.486-489
    • /
    • 2016
  • A horn antenna with corrugation structure and a PTFE(Polytetrafluoroethylene) teflon(relative permittivity=2.1) dielectric lens for good impedance matching characteristic and high gain performance is proposed in this paper. The proposed antenna shows measured return loss below -25 dB over the operating X band(8~12 GHz), the peak gain of 22.3 dBi at the center frequency(10 GHz) and has overall size of $110mm{\times}110mm{\times}135mm$. Considering the performance of the proposed antenna, it is suitable for being inserted in a radar level transmitters, particularly for gas tanks on vessels or off-shore plants containing gas with very low reflectivity and relative permittivity such as LNG or LPG.

The Design of the Ka-band Lens Antenna for Navigation Radar on Helicopter (헬기 장착 항행 레이더용 Ka-대역 렌즈 안테나 설계)

  • Moon Sang-Man;Kim Hyounk-Young;Kim In-Kyu;Lee Sang-Jong;Kim Tae-Sik;Lee Hee-Chang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.53-60
    • /
    • 2004
  • In this paper, the radar antenna of navigation radar on helicopter was suggested to Ka-band lens antenna. It is type of the streamlined convex lens to reduce the air resistivity when helicopter was navigated. Although aperture area is smaller than the standard antenna just like horns, the gain is higher and beamwidth is smaller than standard horns. We made the lens by using maximum flare angle of the horn and dielectric constant of the lens. As a result, when aperture diameter was 280mm and focal length was 145mm, the return loss -21.25dB, the gain was 32.2dBi, E and H beamwidth was $1.8^{\circ}$(E-plane), $1.4^{\circ}$(H-plane), nearly $1.5^{\circ}$, and side-lobe level was -18.4 dB(E-plane), -19.5dB(H-plane) lower were presented. So this suggested type can be used for the radar antenna of navigation radar on helicopter, and it will possible just a little some sidelobe suppression by using the choked horn as a feeder horn.

A Dielectric Slab Rotman Lens (유전판 로트맨 렌즈)

  • 김재흥;조춘식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1108-1115
    • /
    • 2004
  • A new type of a Rotman lens is presented in this paper fur millimeter-wave applications, such as collision avoidance radar. A dielectric slab Rotman lens is proposed to reduce the conductor loss and to create an appropriate farm for favorable implementation at millimeter-wave frequency. The proposed lens consists of a dielectric slab and slot lines whereas the conventional lenses are constructed with parallel conducting plates. The dielectric slab Rotman lens excited in TE$\_$0/ mode shows a high degree of confinement for the fields, low dispersion, and has an appropriate feed structure. A prototype lens has been designed and fabricated with 9 beam ports and 9 array ports together with 9 tapered slot antennas. This lens has been tested in the range from 10 GHz to 15 GHz and the measured beam widths are about 15$^{\circ}$ at 13 GHz. The measurements also show low mutual coupling between beam ports and an efficiency of about 34.6 %. The overall performance is comparable to that of conventional Rotman lenses even though the prototype was tested at lower than desired frequencies in the microwave frequency range due to our limited resources for fabrications and measurements. It is expected that at millimeter-wave frequency the dielectric slab Rotman lens will have lower conductor loss and lower mutual coupling than conventional Rotman lenses.an lenses.

Development of a V-band Rotman Lens Using Thin-Film Dielectric (Thin-Film Dielectric을 이용한 V-band Rotman Lens의 개발)

  • Lee, Jang-Soo;Park, Sang-Bok;Lee, Dong-Kyu;Song, Saeng-Seob;Lee, Sang-Hyo;So, Joon-Ho;Kwon, Young-Woo;Seo, Kwang-Seok;Cheon, Chang-Yul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1073-1081
    • /
    • 2006
  • In this paper, a phased array antenna based on thin-film dielectric technology at 60 GHz is designed. In order to reduce dividing/combining loss and avoid high loss of phase shifters, Rotman Lens has been employed as a feeder of antenna. The lens has 3 beam ports and 5 array ports with 2 dummy ports. The simulation for the design was performed by simulator using MoM(method of moments). The measured results of fabricated lens show magnitude deviation less than ${\pm}2dB$ and phase aberration less than ${\pm}5^{\circ}$ over $58{\sim}62GHz$. The antenna shows ${\pm}7^{\circ}$ of scan angles.