• Title/Summary/Keyword: Dielectric elastomer

Search Result 37, Processing Time 0.032 seconds

Effects of Thickness, Elastomer Types and Thinner Content on Actuation Performance of Electro Active Dielectric Elastomers (탄성체의 두께, 종류 및 희석제 함유량이 전기활성 유전탄성체의 구동 성능에 미치는 영향)

  • Li, Bin;Lin, Zheng-Jie;Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • The actuation performance of an EADE (Electro-active dielectric elastomer) is studied as functions of thinner content, thickness and types of the dielectric elastomer such as natural (NR), acrylonitrile-butadiene (NBR), and silicon (KE-12) rubbers. With a decrease in elastomer thickness ($1{\rightarrow}0.5{\rightarrow}0.25{\rightarrow}0.1{\rightarrow}0.05$ mm) and an increase in thinner content ($0{\rightarrow}30{\rightarrow}50$ phr), the actuating displacement of KE-12 elastomer is increased, however their breakdown occurs at low voltage. For the same thickness (1 mm), the displacement of KE-12 elastomer shows a higher value (2.24 mm) compared to that of NR or NBR at the same applied voltage of 25 kV. The KE-12 has the lowest elastic modulus and the NBR has the highest one among the tested elastomers. However, the displacement of NBR elastomer is higher compared to that of NR because of high dielectric constant. It is found that the important factors of EADE actuator are a thickness, modulus and dielectric constant of the elastomer.

Design and Control of based on Acrylic Dielectric Elastomer MAV Wing Actuator (ADE(Acrylic Dielectric Elastomer)를 이용한 MAV 날개 구동기의 설계 및 제어)

  • 김훈모
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.255-260
    • /
    • 2004
  • Existing flapping MAV which is driven by motors or the other materials, has various defects. For the settlement of the issue, flapping MAV wing actuator is developed by using ADE(Acrylic Dielectric Elastomer). In comparison with existing materials which drive flapping wing, ADE has advantages of light weight as well as sufficient force. In order that correct lift farce occurs at this actuator, it must require to control to approach given reference. So it is controlled to approach given displacement by using fuzzy algorithm and is verified through simulation.

Micro robot using actuators based on dielectric elastomer (고분자 구동기를 이용한 마이크로 로봇)

  • 최혁렬;정광목;남재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.334-337
    • /
    • 2003
  • In this paper. we introduce a novel actuation method based on dielectric elastomer. Along with basic principles of actuation using dielectric elastomer a new design of actuator is discussed. The proposed design has advantageous features in reduction in size, speed of response, ease and ruggedness of operation. Using the actuator. a three-degree-of-freedom actuator module is developed, which can provide up-down. and two rotational degree-of-freedom motion. In the application of the proposed actuation method, a micro-robot mimicking the motion of an inchworm is developed.

  • PDF

Design and Position Control of AF Lens Actuator for Mobile Phone Using Dielectric Elastomer (Dielectric Elastomer를 이용한 카메라 폰 AF 렌즈 구동기의 설계 및 제어)

  • Shim, Hyun-Jae;Kim, Chul-Jin;Jeong, Jun;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.739-739
    • /
    • 2005
  • In the conventional AF lens actuating system the VCM actuator is used. However due to the actuating mechanism, the VCM actuator has disadvantage in miniaturizing which is essential to the actuator for the mobile device. Therefore novel type actuator is required and the one of the candidate is actuator using electoractive polymer (EAP). The EAP actuator is one of the attractive smart materials that is light and can be easily fabricated with low cost. This paper proposes an AF lens actuator for mobile phone using dielectric elastomer. The proposed actuator was designed and analyzed using finite element method. The designed actuator is verified by experiment and the position control algorithm is applied.

  • PDF

Stacked Artificial Muscle Actuator Based on Dielectric Elastomer (고분자 유전 탄성체를 이용한 적층형 인공 근육 구동기)

  • Kwon, Hyeok-Yong;Ahn, Kwang-Jun;Kim, Dae-Gyeong;Lee, Hyung-Seok;Nguyen, Canh Toan;Koo, Ja-Choon;Moon, Hyung-Pil;Nam, Jae-Do;Choi, Hyouk-Ryeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1234-1241
    • /
    • 2011
  • In this work the potential, and the perspectives of the dielectric elastomer actuator are overviewed briefly. As an exemplary work, we introduce a novel contractile artificial muscle actuator based on Synthetic Elastomer(SE). SE is the name of new dielectric elastomer material we have developed and its synthesis procedures and evaluations are described in the first. The contractile artificial muscle actuator is made by stacking the actuator unit one by one along the in thickness direction and finished up by bonding the multi-stacked actuator. Its possibility for the robotic actuator is discussed and demonstrated via experiments.

Design and Control of AF Lens Actuator for Mobile Phone Using Dielectric Elastomer EAP (Dielectric Elastomer EAP를 이용한 폰 카메라용 Lens 구동기 제작 및 제어)

  • Hwang, H.W.;Kim, C.J.;Park, N.C.;Yang, H.S.;Park, Y.P.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.463-463
    • /
    • 2006
  • Nowadays, subminiature lens actuators are being developed with the demand of AF lens for high performance of the mobile phone camera. Though the VCM is the current, development of new types of actuators are needed due to the structural problem and etc.. A new type of actuator for AF lens using Dielectric Elastomer Electroactive Polymer(EAP) is proposed in this paper, DE EAP has advantages in its weight, ease of fabrication and low power consumption. The mathematical model is obtained by Hamilton's principle and verified by finite element analysis and experiments. The controller is designed and evaluated by experiments.

  • PDF

A Face Robot Actuated With Artificial Muscle Based on Dielectric Elastomer

  • Kwak Jong Won;Chi Ho June;Jung Kwang Mok;Koo Ja Choon;Jeon Jae Wook;Lee Youngkwan;Nam Jae-do;Ryew Youngsun;Choi Hyouk Ryeol
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.578-588
    • /
    • 2005
  • Face robots capable of expressing their emotional status, can be adopted as an efficient tool for friendly communication between the human and the machine. In this paper, we present a face robot actuated with artificial muscle based on dielectric elastomer. By exploiting the properties of dielectric elastomer, it is possible to actuate the covering skin, eyes as well as provide human-like expressivity without employing complicated mechanisms. The robot is driven by seven actuator modules such eye, eyebrow, eyelid, brow, cheek, jaw and neck module corresponding to movements of facial muscles. Although they are only part of the whole set of facial motions, our approach is sufficient to generate six fundamental facial expressions such as surprise, fear, angry, disgust, sadness, and happiness. In the robot, each module communicates with the others via CAN communication protocol and according to the desired emotional expressions, the facial motions are generated by combining the motions of each actuator module. A prototype of the robot has been developed and several experiments have been conducted to validate its feasibility.

Dynamic Braille Display Using Dielectric Elastomer (고분자유전체를 이용한 동적 점자출력기)

  • 최혁렬;이상원;정광목;이성일;최후곤;전재욱;남재도
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.592-599
    • /
    • 2003
  • As one of the Principal modalities of human sensation, tactile feel is prerequisite for building wide variety of applications such as telemanipulation, virtual reality and medical engineering. A dynamic Braille display device based on a polymer actuator is presented. The actuator, often called artificial muscle actuator has advantageous features over the existing methods in terms of intrinsic softness, ease of fabrication, cost-effectiveness and miniaturization. The principles of actuation with dielectric elastomer is introduced, and necessary considerations on the design of a tactile display device are discussed. The design of the device is described in detail including the fabrication process and driving electronics. Also, preliminary results of experiments are given to evaluate its performance.

Analysis of dielectric and insulation characteristics of elastic epoxy resin according to elastomer contents for power machines (전력용 탄성형 에폭시의 유전 및 절연 특성 해석)

  • Kim, Seok-Jae;Park, Seong-Hee;Lim, Kee-Joe;Lee, Ki-Tae;Kang, Seong-Hwa;Park, Dea-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.230-232
    • /
    • 2004
  • In this paper, we investigated dielectric and insulation characteristics of epoxy resin which includes elastomers to improve mechanical property, as varied additive elastomer contents with 5[phr], 10[phr], 15[phr], and 20[phr]. We measured permittivity and tan $\delta$ at 1kHz of signal frequency and room temperature. And we also measured BVD(break-down voltage) and volume resistivities. According to the experimental results, it is appeared that when the additive elastomer contents are increasing, permittivity, volume resistivity, BVD and volume resistance are decreasing because elastomer remains inferior to epoxy resin on electrical properties.

  • PDF