• Title/Summary/Keyword: Dielectric degradation

Search Result 223, Processing Time 0.021 seconds

The Concentrations of Endocrine Disrupter (PCBs and DDE) in the Serumand Their Predictors of Exposure in Korean Women (일부 한국 성인 여성들의 혈중 내분비계 장애물질 농도 및 그 노출요인의 연구)

  • 민선영;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.127-137
    • /
    • 2001
  • Polychlorinated biphenyls(PCBs) are halogenated aromatic compounds with the empirical formula $C_{12}$ $H_{10-n}$C $l_{n}$(n=1~10), and are a mixture of possible 209 different chlorinated congeners. PCBs were widely used as dielectric fluids for capacitors and transformers, plasticizers, lubricant inks and paint addirives. Once released into the environment, PCBs persist for years because they are so resistant to degradation. In addition to their persistence in the environment, PCBs in ecological food chains undergo biomagnification because of their high degree of lipophilicity. In 1970s, the worldwide production of PCBs was ceased and the import of PCBs was prohibited since 1983 in Korea. In spite of these actions, many PCBs seems to be still in use. The environmental load of PCBs will continue to be recycled through air, land, water, and the biosphere for decades to come. This study was conducted to measure the concentrations of PCBs in the serum samples of 112 women by GC/MSD and GC/ECD. The main results of this study were as follows. 1. PCBs were detected in all samples. The mean $\pm$SD levels of PCBs in the serum were 3.613$\pm$0.759 ppb, and median were 3.828 ppb. 2. The correlation coefficients of the concentrations of 13 PCB congeners were from minimum, 0.7913 to maximum, 0.9985, and all was significant(p=0.0001). The correlation coefficient between the concentrations of PCBs and p,p'-DDE was 0.9641(p=0.0001). 3. There was a positive association between age and PCBs' concentrations (simple linear regression ; $R^2$=0.86, $\beta$=0.08023, p<0.001). 4. There was a positive association between total lipids in the serum and PCBs' concentrations (simple linear regression ; $R^2$=0.7058, $\beta$=0.00486, p<0.001). 5. For possible predictors of PCBs and p,p' -DDE levels in the serum, age adjusted model (Y=$\beta$$_{0}$+$\beta$$_1$age+ $B_2$X) was applied. For BMI, major residential area, wether to eat caught fish by angling, where to eat caught fish by angling(by parents in the past), fish consumption, meat consumption, meat consumption, and dairy consumption, there was no association. For total conception frequency and lactation frequency and lactation period, there was negative association.ion.

  • PDF

Sputtering Yield and Secondary Electron Emission Coefficient(${\gamma}$) of the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ Thin Film Grown on the Cu Substrate by Using the Focused Ion Beam (Cu 기판위에 성장한 MgO, $MgAl_2O_4$$MgAl_2O_4/MgO$ 박막의 집속이온빔을 이용한 스퍼터링수율 측정과 이차전자방출계수 측정)

  • Jung K.W.;Lee H.J.;Jung W.H.;Oh H.J.;Park C.W.;Choi E.H.;Seo Y.H.;Kang S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.395-403
    • /
    • 2006
  • It is known that $MgAl_2O_4$ has higher resistance to moisture than MgO, in humid ambient MgO is chemically unstable. It reacts very easily with moisture in the air. In this study, the characteristic of $MgAl_2O_4$ and $MgAl_2O_4/MgO$ layers as dielectric protection layers for AC- PDP (Plasma Display Panel) have been investigated and analysed in comparison for conventional MgO layers. MgO and $MgAl_2O_4$ films both with a thickness of $1000\AA$ and $MgAl_2O_4/MgO$ film with a thickness of $200/800\AA$ were grown on the Cu substrates using the electron beam evaporation. $1000\AA$ thick aluminium layers were deposited on the protective layers in order to avoid the charging effect of $Ga^+$ ion beam while the focused ion beam(FIB) is being used. We obtained sputtering yieds for the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ films using the FIB system. $MgAl_2O_4/MgO$ protective layers have been found th show $24{\sim}30%$ lower sputtering yield values from 0.244 up to 0.357 than MgO layers with the values from 0.364 up to 0.449 for irradiated $Ga^+$ ion beam with energies ranged from 10 kV to 14 kV. And $MgAl_2O_4$ layers have been found to show lowest sputtering yield values from 0.88 up to 0.109. Secondary electron emission coefficient(g) using the ${\gamma}$- FIB. $MgAl_2O_4/MgO$ and MgO have been found to have similar g values from 0.09 up to 0.12 for indicated $Ne^+$ ion with energies ranged from 50 V to 200 V. Observed images for the surfaces of MgO and $MgAl_2O_4/MgO$ protective layers, after discharge degradation process for 72 hours by SEM and AFM. It is found that $MgAl_2O_4/MgO$ protective layer has superior hardness and degradation resistance properties to MgO protective layer.

High quality topological insulator Bi2Se3 grown on h-BN using molecular beam epitaxy

  • Park, Joon Young;Lee, Gil-Ho;Jo, Janghyun;Cheng, Austin K.;Yoon, Hosang;Watanabe, Kenji;Taniguchi, Takashi;Kim, Miyoung;Kim, Philip;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.284-284
    • /
    • 2016
  • Topological insulator (TI) is a bulk-insulating material with topologically protected Dirac surface states in the band gap. In particular, $Bi_2Se_3$ attracted great attention as a model three-dimensional TI due to its simple electronic structure of the surface states in a relatively large band gap (~0.3 eV). However, experimental efforts using $Bi_2Se_3$ have been difficult due to the abundance of structural defects, which frequently results in the bulk conduction being dominant over the surface conduction in transport due to the bulk doping effects of the defect sites. One promising approach in avoiding this problem is to reduce the structural defects by heteroepitaxially grow $Bi_2Se_3$ on a substrate with a compatible lattice structure, while also preventing surface degradation by encapsulating the pristine interface between $Bi_2Se_3$ and the substrate in a clean growth environment. A particularly promising choice of substrate for the heteroepitaxial growth is hexagonal boron nitride (h-BN), which has the same two-dimensional (2D) van der Waals (vdW) layered structure and hexagonal lattice symmetry as $Bi_2Se_3$. Moreover, since h-BN is a dielectric insulator with a large bandgap energy of 5.97 eV and chemically inert surfaces, it is well suited as a substrate for high mobility electronic transport studies of vdW material systems. Here we report the heteroepitaxial growth and characterization of high quality topological insulator $Bi_2Se_3$ thin films prepared on h-BN layers. Especially, we used molecular beam epitaxy to achieve high quality TI thin films with extremely low defect concentrations and an ideal interface between the films and substrates. To optimize the morphology and microstructural quality of the films, a two-step growth was performed on h-BN layers transferred on transmission electron microscopy (TEM) compatible substrates. The resulting $Bi_2Se_3$ thin films were highly crystalline with atomically smooth terraces over a large area, and the $Bi_2Se_3$ and h-BN exhibited a clear heteroepitaxial relationship with an atomically abrupt and clean interface, as examined by high-resolution TEM. Magnetotransport characterizations revealed that this interface supports a high quality topological surface state devoid of bulk contribution, as evidenced by Hall, Shubnikov-de Haas, and weak anti-localization measurements. We believe that the experimental scheme demonstrated in this talk can serve as a promising method for the preparation of high quality TI thin films as well as many other heterostructures based on 2D vdW layered materials.

  • PDF